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Online Supplement for “Poiseuille flow of a Bingham
fluid in a channel with a superhydrophobic groovy
wall”

This online supplement is structured into six sections, as follows.

1. Approximate model

Certain flow assumptions may allow us to develop an approximate solution for creeping
flow of the thick channel limit, which we develop for the sake of completeness of the
current study. In solving equation (3.5) of the manuscript, the term dU0/dy = C1+2C2y,
which is generally a function of y, can be approximated with a constant value for the range
of thick channels. In this range, the wall-induced perturbations occur in a near wall region
and they decay in the normal direction to the wall (i.e. the y direction). To be clear, if
we consider that the height of the near wall region containing the perturbation field is yp,
therefore, for thick channels where yp � 1, the no-slip flow gradient (dU0/dy = C1+2C2y)
reduces to dU0/dy ≈ C1, since the term 2C2y (for y 6 yp) becomes small compared
to C1. Therefore, we use the approximation of dU0/dy ≈ C1, where C1 is the no-slip
velocity gradient at the lower wall and it always has a positive real value. Consequently,
equation (3.5) of the manuscript is reduced to an ordinary differential equation with
constant coefficients. For a Bingham fluid (Bi 6= 0), when n 6= 0, the following exponential
solution is expected:
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For n = 0, the previously obtained quadratic function solution is valid. Therefore, the
solution for the perturbation stream function and velocities are written as:
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For the boundary conditions, we again consider ψ = 0 at the SH wall (no-penetration
condition) and zero perturbation velocities at the lower yield surface; thus, we find:

ψ(x, 0) = 0, v(x, h) = 0, u(x, h) = 0. (S7)
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Applying the above-mentioned boundary conditions, we obtain:
J0 = 0,
F0 = −E0

2h ,
Bn = CBAn,
Cn = CCAn,
Dn = CDAn,

(S8)

where the coefficients CB , CC , CD are found as:
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Considering E0 = A0 and substituting equation (S8) into equations (S3)-(S5), the
following solutions are obtained:
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To find the unknown coefficients An in above solutions, we employ the slip and no-slip
boundary conditions at the SH wall and follow the same method developed in the semi-
analytical model section. Consequently, we have a system of linear algebraic equations
that is solved numerically for the unknown coefficients An. The iterative approach
discussed earlier is then followed to capture the location of the lower yield surface.
Since the approximate solution only includes linear algebraic equations, it is easy-to-
implement, fast, and robust. For a more detailed analysis, we evaluate the accuracy of
the approximate solution, by comparing its results to those of the full semi-analytical
solution. To make the comparison, we consider a thick channel with ` = 0.2 and ϕ = 0.5.
The flow is creeping, the Bingham numbers are chosen as Bi = 1 and Bi = 10, and the
slip numbers are relatively large (there is no plug formation at the SH wall). As shown in
Figure S1, an excellent agreement between the semi-analytical and approximate model
results is found, confirming the accuracy of the approximate solution for the creeping
flow in the thick channel limit.
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Figure S1. Comparison between the semi-analytical and approximate model results. The slip
velocity for a thick channel with ` = 0.2 and ϕ = 0.5. The flow is creeping.

2. Evaluation of the order of the inertial terms

Keeping the non-linear advection terms and rewriting equation (3.19) of the manuscript
using the perturbation parameter ε = κ−1, we obtain the following equation:
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where the inertial terms are numbered from 1 to 4, while the third and fourth terms
represent the non-linear advection terms. For the thick channel limit, we can re-scale
equation (S14) using X = κx, Y = κy and Ψ = κψ, where X−Y is the scaled coordinate
system and Ψ is the scaled perturbation stream function. This scaling originates from
the fact that the perturbation field becomes negligible when reaching a distance from
the SH wall (in the y direction) which is within the same magnitude order as the groove
periodicity length. In the new coordinate system, X and Y are of O (1) since the upper
bound in Y where the perturbation field becomes negligible is of order one. Therefore,
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equation (S14) can be rewritten, after simplifications, in the following form:
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For Re = κ, the first advection term (term 1) in equation (S15) has the same order of
magnitude as the first three viscous terms. Note that for ` = 0.2, which in our work is
the common value of ` presented in several figures, we have κ ≈ 31. For Re = κ2, the
non-linear inertial terms (terms 3 and 4) become comparable to the viscous terms, thus,
affecting the flow. Therefore, for ` = 0.2, we may expect that for Re & 900, the neglected
non-linear terms could have an effect on the flow solution. However, one should note that
the significance of such effects also depends on the slip number. For example, comparing
the accuracy of the semi-analytical solutions in Figures 3 and 4 of the manuscript, one
can realize that the increase in the slip number from b = 0.01 to b = 0.04 (for Bi = 1)
has a significant effect on the accuracy of the semi-analytical solution of the slip velocity,
due to the growth of the non-linear advection terms. However, considering Figure 2 of
the manuscript, even at Re = 3600, overall, the semi-analytical solution still provides a
reasonable accuracy for the large slip numbers taken.

3. Computational mesh

To generate the computational domain, we consider a portion of the channel that
contains only one period of the SH groovy wall. Therefore, a periodic boundary condition
is applied at the inlet and outlet, while the no-slip condition is dedicated for the upper
wall and the no-slip regions of the SH lower wall. A linear Navier slip model is considered
for the slip region of the SH wall, which is developed for OpenFOAM 2.2.x by Vasudevan
(2017).

Due to the fact that we employ the DNS to simulate flow configurations with a
wide range of Reynolds numbers, the size of the computational mesh is important. In
other words, we seek highly resolved simulations in space. To ensure a sufficiently fine
computational mesh, we follow the DNS standards. Knowing the fact that the lower
yielded zone is perturbed about the no-slip Poiseuille flow, for our Bingham fluid, we
define the friction velocity as:

ûτ =

√
ν̂p
dÛ0

dŷ
+
τ̂0
ρ̂
, (S16)

where ν̂p is the plastic kinematic viscosity and dÛ0/dy roughly represents the average
velocity gradient at the SH wall. In this study, a non-uniform orthogonal mesh is used,
such that a finer mesh size is considered for the near wall region compared to the channel
center. Additional mesh refinement is considered for the regions close to the groove
edges, i.e. the connecting points between the slip and no-slip regions at the SH wall
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Figure S2. Computational mesh for the region close to the SH wall (lower panel, 0 6 y 6 0.03)
and the middle of the channel (upper panel, 0.92 6 y 6 1.07), where ` = 0.2, ϕ = 0.5 and
−`/2 6 x 6 `/2. The grey area illustrates the SH groovy wall where air is trapped inside the
white area.

(see Figure S2). The simulations are typically carried out with the use of Nx × 600, as
the number of cells in the x and y directions, respectively. For the simulated channel
of ` = 0.2 (frequently presented in this study), the number of cells in the x direction is
chosen as Nx = 60. The cell sizes corresponding to the selected mesh are consistent with
the DNS requirements. For the most extreme case considered in this study, i.e. ` = 0.2,
Re = 3600 and Bi = 10 (Reτ = ûτ Ĥ/ν̂p ≈ 240), our average cell sizes in the x and y
directions are ∆̄x+, ∆̄y+ ≈ 0.8, respectively (here the bar sign denotes the average value
and the plus sign represents the normalized value with respect to the viscous wall unit,
i.e.

ν̂p
ûτ

). In addition, for this extreme case, the size of the cell adjacent to the wall is

obtained as y+ ≈ 0.24. The selected computational mesh also provide us with accurate
and converged values of the slip velocity and its gradients at the SH wall as well as the
total velocity field.

It is worth mentioning that, for large Reynolds numbers, we have also conducted DNS
simulations in a long channel with 10 grooves, without enforcing periodic conditions at
the inlet and outlet boundaries. We have found that the results are similar to those of
the periodic domain (Figure S2), confirming that, based on the assumptions made, the
dominant flow period can be the same as that of the SH groovy wall for our flow (results
omitted for brevity). However, as discussed previously, in general the flow period could
differ from that of the flow geometry, which can be analyzed in future, e.g. via a stability
analysis.

4. Evaluation of the regularization parameter (m̂)

The effects of the Papanastasiou regularization parameter (m̂) on our DNS velocity
profiles are evaluated in Figure S3, where the slip and total velocity profiles for the
creeping flow (at Bi = 10) are presented, based on considering three values of m̂ = 103

(s), m̂ = 105 (s) and m̂ = 107 (s). For larger regularization parameters, the physics
of our viscoplastic fluid flow (especially the unyielded plug zone) can be captured more
accurately, while the computations become more costly. For the sake of calculating the
velocity profiles, Figure S3 shows that the DNS results with m̂ = 103 (s) are as accurate
as those with larger values of m̂, albeit converged faster. Therefore, in the present study,
in calculating the velocity profiles, we have mainly relied on m̂ = 103 (s); however,
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Figure S3. Semi-analytical and DNS results. Effects of the Papanastasiou regularization
parameter (m̂) on the results for ` = 0.2, ϕ = 0.5, Re = 0.01, Bi = 10 and b = 0.007. a)
Total streamwise velocity profile at x = 0. b) Slip velocity.

for other purposes such as capturing the plug zone formation at the SH wall, we have
conducted simulations with m̂ = 107 (s), to have accurate predictions of the onsets of
such a phenomenon.

5. Analysis of dimensional and dimensionless flow parameters from
an experimental perspective

Here, let us briefly discuss about the possible/typical ranges of the dimensional and
dimensionless parameters, useful for an experimental study in relation to our flow. Let
us start from, in particular, the viscoplastic fluid’s rheological properties, the typical
structures of the SH surface, and the other flow parameters (e.g. the channel height
and the average flow velocity), described as follows. (i) Regarding the fluid, these days,
Carbopol gels are usually used as experimental viscoplastic materials, whose rheological
properties depend on the concentration and acidity of Carbopol (Eslami & Taghavi 2019).
This allows one to achieve a wide range of yield stress values. For instance, the measured
yield stress values for relatively large Carbopol concentrations of 0.15% and 0.2% (wt/wt)
have been reported as τ̂0 = 13.7 (Pa) (Eslami & Taghavi 2019) and τ̂0 = 25.3 (Pa)
(Pourzahedi et al. 2021). Similar values have been reported in other works (Eslami &
Taghavi 2017; Lyu & Taghavi 2020; Eslami et al. 2020, 2022; Akbari & Taghavi 2022a,b;
Taghavi 2022). Therefore, the yield stress values of Carbopol gels can be as large as tens
of Pascals; however, their densities are typically very close to that of water (Balmforth
et al. 2014; Eslami & Taghavi 2019). In practice, a wide range of values for the plastic
viscosity of experimental viscoplastic fluids can be also considered, e.g. 0.001 6 µ̂p 6 0.1
(Pa.s). (ii) Regarding the SH geometry, a wide range of values have been reported for the
groove width (i.e. the slip area width), depth and period. For example, Choi et al. (2021)
have conducted flow experiments using groovy SH walls, with the groove width of 72−96
(µm), the depth of 124− 144 (µm) and the period of ∼ 200 (µm). Also, Mongruel et al.
(2013) have used SH surfaces with micro-grooves in a series of experiments, with the
groove depth of 45 (µm), the width of 50− 225 (µm) and the period of 100− 250 (µm).
As another example, Tsai et al. (2009) have conducted flow experiments in a channel
with transverse groovy SH walls, in which the groove width, depth and period have been
16 (µm), 20 (µm) and 27 (µm), respectively. In the study of Ou & Rothstein (2005), the
groove width, depth and period have been 20− 120 (µm), 25 (µm) and 40− 150 (µm),
respectively. On the other hand, Song et al. (2018) have used millimetre range sizes of
the groove geometry in channel flow experiments, where the groove width, length and
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depth have been chosen as 1 (mm), 5 (mm) and 5 (mm), respectively. (iii) Considering
that the groove period can vary from tens of micrometers to several millimetres, for the
thin to thick channel limits, the half channel height (Ĥ) can also possess a wide range
of values, from micrometers to centimetres. Finally, the average flow velocity Ûave can
have a wide range of values as well.

Considering the discussion above, the Reynolds number can vary in the wide range
of 10−4 . Re . 104 (or even larger). The Bingham number can also cover the wide
range of 10−4 . Bi . 104. In addition, based on the possible sizes of the groove period
and the half channel height, ` can also have the wide range of 10−3 . ` . 101. Also,
the slip area fraction (ϕ) varies between zero (no-slip) and unity (full-slip). In addition,
based on the slip law and the definition of the slip number, we can crudely show that
ε̂
Ĥ
≈ µ̂a

µ̂p
ûs
Ûave

1
Bi+C1

, which based on typical values of the flow parameters can vary in

the range of 10−7 . ε̂
Ĥ

. 10−3. Remind that ε̂ is the average characteristic distance
in the air layer where the air velocity reaches zero. Note that ε̂ does not represent the
groove depth; in fact, considering the air flow inside the groove conceptually similar to
a lid-driven flow, the distance ε̂ (which can be linked to the liquid/air interface distance
from the center of the lid-driven vortex) should be smaller than the groove depth. Finally,

based on the range of ε̂
Ĥ

, the range of b =
b̂µ̂p

Ĥ
can be found as 10−5 . b . 101.

6. Plane Poiseuille flow of a Bingham fluid with homogeneous slip at
the lower wall

Here, we solve for the velocity profile of plane Poiseuille flow of a Bingham fluid,
assuming the Navier slip law at the lower wall and the no-slip condition at the upper
one. This problem has been already addressed by Panaseti & Georgiou (2017); however,
we re-drive the solution in the form of our dimensionless parameters and, eventually,
find a simplified closed form relation for the critical slip number at which the lower yield
surface reaches the lower wall, i.e. h = 0. Solving the momentum balance equation, the
following relation for the velocity field is obtainable:

U(y) =



G
2 y

2 + (τw −Bi) y + bτw, 0 6 y 6 h,

G
2 h

2 + (τw −Bi)h+ bτw, h 6 y 6 hu,

G
2 y

2 + (τw +Bi) y − 2 (G+ τw +Bi) , hu 6 y 6 2,

(S17)

where G = ∂P/∂x and is generally obtained through an iterative procedure considering
a continuous velocity profile at the upper yield surface, i.e. hu, and the fixed flow rate.
In addition, the location of the lower and upper yield surfaces are obtained as h = Bi−τw

G

and hu = −Bi−τw
G , respectively.

At the critical condition, where h = 0, we have τw = Bi and there is only one yielded
zone, which is the upper yielded zone near the upper wall. Considering the continuity of
the velocity profile at the upper yield surface and having the fixed flow rate, the following
relation is obtained for the critical slip number:

bhcr = − 1

Bi

(
2
Bi2

Gcr
+ 2Gcr + 4Bi

)
, (S18)
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where Gcr is obtained as:
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√
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