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1 Definition of dissipation and its role in the RANS equations

1.1 The instantaneous equations

If we denote ũi the instantaneous velocity components of a Newtonian incompressible fluid, ρ the fluid
density, and µ the dynamic viscosity, then the flow is described for incompressible flow by the continuity
equation and the Navier-Stokes equations given respectively by:

∂ũi
∂xi

= 0

ρ
∂ũi
∂t

+ ρũj
∂ũi
∂xj

= − ∂p̃

∂xi
+

∂

∂xj
(τ̃ij) (1)

For an incompressible Newtonian fluid, τ̃ij = 2µs̃ij is the viscous stress tensor, ν = µ/ρ is the kinematic
viscosity and s̃ij = (1/2)(∂ũi/∂xj + ∂ũj/∂xi) is the instantaneous strain-rate tensor, In this paper only
flows of constant density will be of interest. We note for future reference that the deformation-rate tensor,
∂ũi/∂xj , can be decomposed into its symmetric and anti-symmetric parts as ∂ũi/∂xj = s̃ij + ω̃ij where
ω̃ij = (1/2)(∂ũi/∂xj − ∂ũj/∂xi) is the rotation-rate tensor.

1.2 The averaged equations

In turbulence the flow velocity field is usually decomposed into mean and fluctuating parts using the
Reynolds decomposition, say ũi = Ui + ui , where Ui = 〈ũi〉 and 〈ui〉 = 0. Any instantaneous flow
variable (e.g., p̃, τ̃ij , ε̃...) can be similarly decomposed. Based on such a decomposition, the Reynolds-
averaged equations can be obtained:
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∂Ui
∂xi

= 0

ρ
∂Ui
∂t

+ ρUj
∂Ui
∂xj

= − ∂P
∂xi

+
∂

∂xj
(Tij − ρ〈uiuj〉) (2)

where Tij = 2µSij , Sij = (1/2)(∂Ui/∂xj + ∂Uj/∂xi) and ρ〈uiuj〉 are the well-known Reynolds stresses.
The classical next step in a statistical approach of turbulence is to derive transport equations for this

Reynolds stresses:

ρ
∂〈uiuj〉
∂t

+ ρUl
∂〈uiuj〉
∂xl

=

−ρ〈uiul〉
∂Uj
∂xl
− ρ〈ujul〉

∂Ui
∂xl

+
∂

∂xl
(〈uiτjl〉+ 〈ujτil〉 − 〈uip〉δjl − 〈ujp〉δil − ρ〈uiujul〉)

+

(
〈p ∂ui
∂xj
〉+ 〈p∂uj

∂xi
〉
)

−〈τil
∂uj
∂xl
〉 − 〈τjl

∂ui
∂xl
〉

(3)

The term on the second line is the production of the corresponding Reynolds stress, the third line
corresponds to the diffusion by, respectively, the viscosity, the pressure fluctuations and the velocity
fluctuations, the fourth line is the redistribution term and the last line corresponds to the dissipation.

The important point for this paper is to emphasize the form of the viscous diffusion (first two terms
of the third line of equation (3) and the dissipation (last line of the same equation). Note that the
notion of “dissipation” appears here for the first time as the equations have raised by one order and the
transported terms have now the dimension of a kinetic energy. As equation (3) represents a set of 6
independent equations, the “dissipation” appears here as a tensor:

εij =
1

ρ
〈τil

∂uj
∂xl
〉+

1

ρ
〈τjl

∂ui
∂xl
〉 (4)

which can also be written as:

εij = 2ν〈∂ui
∂xl

∂uj
∂xl
〉+ ν〈∂ul

∂xi

∂uj
∂xl
〉+ ν〈 ∂ul

∂xj

∂ui
∂xl
〉 (5)

From equation (3), by contraction of the two indices i and j (or by taking the trace of the set of
equations), and dividing by 2, the equation for the turbulence kinetic energy k is directly obtained as:

ρ
Dk

Dt
= ρ〈uiuj〉

∂Uj
∂xj

+
∂

∂xj

[
−〈puj〉−

ρ

2
〈uiuiuj〉+ 〈uiτij〉

]
− ρε (6)

where the first term on the right hand side is the production of TKE, the second one is the diffu-
sion term by, respectively, the pressure fluctuations, the velocity fluctuations and the viscosity. ε ≡
(1/ρ)〈τij∂ui/∂xj〉 = 1

2εii is the true turbulence dissipation, k ≡ 〈uiui〉/2 is the average kinetic energy
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per unit mass associated with turbulence, and the left-hand-side has been compacted using the averaged
material derivative defined to be:

D

Dt
=

∂

∂t
+ Uj

∂

∂xj
. (7)

Note that since ensemble averages are implied, the above equations (2), (3) and (6) are valid in both
statistically stationary and non-stationary flows; i.e., there has been no assumption of time-averaging!
Note also for future reference the form of the viscous diffusion term, 〈uiτij〉.

1.3 The dissipation, ε

For reasons of simplicity and to conform to usual practice, in the following we will replace 〈ε〉 by just ε.
It is relatively easy to show that 〈ε〉 is indeed the real dissipation (at least in a Newtonian flow), since
it is always positive and occurs with the opposite sign in the Reynolds-averaged entropy equations (Note
that the latter is not true for the pseudo-dissipation D defined below.).

It is easy to show from the definitions that for incompressible Newtonian fluids:

ε = 〈1
ρ
τij

∂ui
∂xj
〉 = 2ν〈sijsij〉, (8)

since only the symmetrical part of the velocity deformation survives the double-contraction of the indices.
Expanding the strain-rate tensor in equation (8) yields the form most useful for experimental evaluation:

ε = ν〈
[
∂ui
∂xj

]2
〉+ ν〈 ∂ui

∂xj

∂uj
∂xi
〉 (9)

If the flow is statistically homogeneous, then homogeniety alone implies that the upper and/or lower
indices can be interchanged [George and Hussein, 1991]; e.g., permutting the lower yields:

〈 ∂ui
∂xj

∂uj
∂xi
〉 = 〈∂ui

∂xi

∂uj
∂xj
〉 (10)

If the flow is also incompressible, continuity together with homogeneity implies that cross-derivative terms
are identically zero ALWAYS since ∂ui/∂xi = 0 instantaneously. But there are very few turbulent flows
which are homogeneous. So strictly speaking, this is almost never true, and is at best an approximation.
When it is true the flow is said to be “locally homogeneous” [George and Hussein, 1991].

1.4 The ‘pseudo-dissipation’

Another quantity will also be investigated in the present contribution; namely the pseudo dissipation,
which is defined as a tensor when looking at the Reynolds stress equations:

Dij = 2ν〈∂ui
∂xl

∂uj
∂xl
〉 (11)

or as a scalar when looking at the turbulence energy:

D = ν〈
[
∂ui
∂xj

]2
〉. (12)
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Expanding the double contraction of the velocity gradient tensor yields:

D = ν〈
[
∂ui
∂xj

]2
〉 = ν〈[sij + ωij ]

2〉 = ν[〈sijsij〉+ 〈ωijωij〉] (13)

where ωij is the fluctuating rotation-rate tensor and the product sijωij = 0 since sij is symmetric and ωij
antisymmetric. Note that the mean square fluctuating rotation-rate tensor, 〈ωijωij〉, is NOT in general
equal to the mean square fluctuating strain-rate, 〈sijsij〉. So in general ε and D are different, even when
the flow is turbulent.

A distinction should consequently be made between the true dissipation, ε, and the pseudo-dissipation,
D, which is defined from the mean square deformation rate. Even though D has only squared terms, it
is NOT the dissipation, since it is ε which appears in the kinetic energy equation (6) and with opposite
sign in the entropy transport equation (not detailed here).

From equations (5) and (11) the dissipation tensor εij can be rewritten as:

εij = Dij + ν〈∂ul
∂xi

∂uj
∂xl
〉+ ν〈 ∂ul

∂xj

∂ui
∂xl
〉 (14)

and the dissipation ε as:

ε = D + ν〈 ∂ui
∂xj

∂uj
∂xi
〉 (15)

There is a particular circumstance in which ε and D are equal, namely incompressible homogeneous
turbulence. Then the second term on the right hand side of equation (9) is equal to zero and the two
terms are equal. In a homogeneous turbulence, also 〈ωijωij〉 = 〈sijsij〉 [George and Hussein, 1991]. But
only in homogeneous turbulence!

To use this simplification, even if the flow is not globally homogeneous, it is often assumed that
turbulence is locally homogeneous, which was defined by [George and Hussein, 1991] to be the situation
where the enstrophy and mean square strain-rate are approximately equal. This is usually justified by the
same arguments used for the assumption of local isotropy; namely that the small scales which dominate
velocity derivatives exist in an environment that is relatively independent of the large scale motions.

Also, turbulence modelers usually prefer to use a form of the energy equations in which D (and not
ε) occurs explicitly:

ρ
Dk

Dt
= ρ〈uiul〉

∂Uj
∂xl

+
∂

∂xj

[
−〈puj〉 − ρ

1

2
〈uiuiuj〉+ µ

∂k

∂xj

]
− ρD (16)

Note that both ε and the viscous diffusion term 〈uiτij〉 on the right-hand-side of equation (6) have been
replaced by D and ∂k/∂xj .

Equation (16) is exact and strictly equivalent mathematically to equation (6). But with “dissipation”
and “diffusion” terms that are not physically easy to interpret and which are not obtained directly by
contraction of equation 3.
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2 Supplementary figures
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Figure 1: Linear-linear plot of all dissipation derivatives moments deduced from the PIV data plotted
together.
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Figure 2: Linear-logarithmic plot of all dissipation derivatives moments deduced from the PIV data
plotted together.
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Figure 3: Linear-log plot of all the SPIV dissipation derivatives moments premultiplied by x+2 as a
function of wall distance.
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Figure 4: Comparison of SPIV derivative moments involving u1 with DNS of [Thais et al., 2011] and
hot-wire results of [Balint et al., 1991] and [Honkan and Andreopoulos, 1997].
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Figure 5: Comparison of SPIV derivative moments involving u2 with DNS of [Thais et al., 2011] and
hot-wire results of [Balint et al., 1991] and [Honkan and Andreopoulos, 1997].
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Figure 6: Comparison of SPIV derivative moments involving u3 with DNS of [Thais et al., 2011] and
hot-wire results of [Balint et al., 1991] and [Honkan and Andreopoulos, 1997].
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Figure 7: Comparison of SPIV derivative cross-products with channel DNS of [Thais et al., 2011] and
hot-wire results of [Balint et al., 1991] and [Honkan and Andreopoulos, 1997].
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Figure 8: The dissipation rate ε and production rate in inner variables (linear-linear) for [Thais et al.,
2011] DNS and SPIV along with [Balint et al., 1991, Andreopoulos and Honkan, 2001]
.
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Figure 9: The dissipation rate ε and production rate in inner variables (linear-logarithmic) for [Thais
et al., 2011] DNS and SPIV along with [Balint et al., 1991, Andreopoulos and Honkan, 2001].
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Figure 10: The dissipation rate ε and production rate in inner variables (linear-logarithmic) for [Thais
et al., 2011] DNS and SPIV along with [Balint et al., 1991, Andreopoulos and Honkan, 2001]. The data
are pre-multiplied by x+2 .
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Figure 11: The dissipation rate ε and production rate in inner variables (linear-linear) for [Thais et al.,
2011] DNS and SPIV along with [Balint et al., 1991, Andreopoulos and Honkan, 2001]. The data are
pre-multiplied by x+2 .
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Figure 12: Mean square vorticity (enstrophy) components scaled in wall units (lin-lin plot).
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Figure 13: Mean square vorticity (enstrophy) components scaled in wall units and multiplied by y+

(lin-lin plot).
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Figure 14: Linear plot of the SPIV energy balance premultiplied by x2 in inner variables; i.e., production,
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Figure 15: Linear plot of the [Thais et al., 2011] and [Lee and Moser, 2015] DNS energy balance times
y in inner variables; i.e., production, 〈uv〉+dU+/dy+ (broken), dissipation y+ε+ (plain) and difference
between these two terms (doted), for two values of the Reynolds number.
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Figure 16: Logarithmic plot of the DNS energy balance premultiplied by x2 in inner variables; i.e.,
production, 〈uv〉+dU+/dx+2 (broken), dissipation x+2 ε

+ (plain) and difference between these two terms
(doted), for two values of the Reynolds number by [Thais et al., 2011] at Reτ = 3000 and [Lee and Moser,
2015] at Reτ = 5200.
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Figure 17: Comparison of derivative moments from DNS showing support for local axisymmetry outside
of y+ = 30.
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Figure 18: Comparison of derivative moments for DNS showing support for local homogeneity outside of
y+ = 100.
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