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Supplementary materials
Section 1 is the grid independence study of the laminar flow calculation, as stated in

Section 3.1 in the article. Section 2 provides the solver verification for the cases of crossflow
instability, as described in Section 3.2 in the article. Section 3 gives the details of the
preparatory analysis of SIT in Section 7.1 in the article.

1. Grid independence study
To cluster more points within the boundary layer, two clustering distribution functions are
adopted in the wall-normal direction for the laminar flow calculation. First clustering:

𝜁 ′ =
1 − tanh 𝑐0

1 − tanh
(
𝑐0

𝜁−1
𝑁𝑦−1

) (𝜁 − 1) + 1, 𝜁 = 1, 2, · · · , 𝑁𝑦 (1.1a)

where 𝑁𝑦 is the number of grid points, 𝜁 ′ ∈ [1, 𝑁𝑦] and 𝑐0 ⩾ 0 is the controlling parameter.
The larger 𝑐0 is, the more grids are in the boundary layer. Second clustering:

𝜂 = 𝜂max
𝜁 ′ − 1

𝑏0 − 2𝑎0𝜁 ′
, 𝑎0 =

1 − 2𝜗
2𝜗

, 𝑏0 = (1 + 2𝑎0)
(
𝑁𝑦 − 1

)
+ 2𝑎0 (1.1b)

where the second controlling parameter 𝜗 ∈ (0, 1) is the relative location of the midpoint,
and 𝜂max is the distance between the wall and the shock. To determine the required 𝑁𝑦 , three
calculations are performed with 𝑁𝑦 of 201, 401 and 801, respectively. Figure 1 compares the
results of both the laminar flow (second-order derivative of temperature) and the instability
(growth rate of stationary crossflow mode). As can be seen, the results with 𝑁𝑦 = 401 are
nearly identical to those with 𝑁𝑦 = 801, while the growth rate curve with 𝑁𝑦 = 201 has
minor deviations from the other two. Therefore, 𝑁𝑦 = 401 is adopted for the calculations
presented in the article.

2. Verification of instability solvers
The present instability solvers for TCNE flows have been verified in the authors’ previous
works (see Chen et al. 2021a,b). Besides, we calculate some previous cases on crossflow
instability for comparison. The first is a Mach-3 swept-cylinder case studied by Balakumar &
King (2012). The cylinder radius is 30 mm, Λ = 50°, and Re∞ = 2.83 × 106 /m. The growth
rates of stationary and travelling crossflow modes are calculated using LST. As shown in
figure 2, excellent agreement with the reference data is obtained.

The second case is a Mach-6 swept-parabola case studied by Xu et al. (2019). Λ is 45° and
Re∞ = 8 × 106 /m. The nonlinear evolution of mode (0, 1) with 𝜆𝑧 = 10 mm is calculated
using the NPSE solver under the CPG assumption. Figure 3 gives the disturbance amplitudes
of different modes, and the results are agreeable with the reference.

Finally, a Mach-13 swept-wing case by Kline et al. (2018) is calculated, which is one of
the very few cases concerning both crossflow instability and high-temperature effects. The
wing geometry is displayed in figure 4(a). Here the chord length is 2 m, the thickness is
0.4 m, and the nose radius is 0.5 mm. The free-stream conditions correspond to an altitude of
30 km, the wall is adiabatic, and the angles of sweep and attack are 60° and −4°, respectively.
The flow was assumed to be thermal equilibrium and chemical non-equilibrium (TECN)
by Kline et al. (2018), so the calculations under the TECN assumption are also performed,
by multiplying 𝑄𝑡−𝑣 by a factor of 104 (Hudson 1996). The comparison of the 𝑁 factors
of stationary crossflow modes is shown in figure 4(b), and good agreement is obtained.
The small difference is due to the different model parameters of chemical reaction rates
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Figure 1: (a) Second-order wall-normal derivative of temperature, and (b) the growth rate
of stationary crossflow mode (𝜆𝑧 = 40 mm) by using different 𝑁𝑦
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Figure 2: 𝑁 factor curves of (a) stationary and (b) travelling crossflow modes in the
Mach-3 swept-cylinder case. The reference LST data is from Balakumar & King (2012). 𝜃
is the circumferential angle measured from the leading edge. The notation in the legend

denotes the mode with [ 𝑓 in kHz, 𝜆𝑧 in mm].

and molecular collision integrals. Furthermore, we calculate the growth rates of stationary
modes under the CPG, TECN and TNCN (i.e. TCNE) assumptions, respectively, as shown
in figure 4(c). The non-equilibrium effects are observed to be slightly stabilizing. Further
analysis shows that the crossflow Mach number Macf , as discussed in the article, in the CPG
case is also the largest, so the positive correlation between the crossflow Mach number and
the mode growth rate also holds for this flow. At last, it is worth mentioning that the CPG
results in figure 4(c) have deviations from those in Kline et al. (2018), which is possibly due
to the different transport models used for CPG flows. The CPG results in the present work
adopt the same transport models as those in the TNCN case, while Kline et al. (2018) did
not mention theirs for the CPG case (maybe Sutherland’s law or others).
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Figure 3: Streamwise distribution of disturbance mode amplitudes in the Mach-6
swept-parabola case. The reference NPSE data is from Xu et al. (2019).
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Figure 4: (a) is the geometry of the Mach-13 swept-wing case. (b) is the 𝑁 factor curves of
stationary crossflow modes in the TECN case with the reference LST data from Kline

et al. (2018). The notation in the legend denotes the mode with [ 𝑓 in kHz, 𝜆𝑧 in mm]. (c)
is the 𝑁 factor curves of stationary crossflow modes in the CPG, TECN and TNCN cases.

3. Preparatory analysis of SIT
A convergence study is conducted here to determine the required 𝑁sd for secondary instability
calculations. Also, an examination is performed on whether 𝑁max = 32 in Section 6.1 in the
article is adequate to provide an accurate base flow for SIT. First, the base flow with 𝑁max = 32
is adopted. The eigenvalues 𝜔𝑠 of the three most unstable modes (temporarily termed as M1,
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Mode 𝑁sd = 16 𝑁sd = 18 𝑁sd = 20
M1 (𝛼𝑠 = 126.1 /m) 9.565 − 85.323i 9.563 − 85.326i 9.563 − 85.326i
M2 (𝛼𝑠 = 252.1 /m) 8.696 − 199.19i 8.695 − 199.19i 8.695 − 199.19i
M3 (𝛼𝑠 = 390.8 /m) 8.162 − 309.57i 8.158 − 309.57i 8.159 − 309.57i

Table 1: Eigenvalues 𝜔𝑠/𝑄∞[1/m] of the three most unstable modes from SIT (𝜎𝑑 = 0)
with different 𝑁sd at 𝑠 = 1.0 m in the TCNE benchmark case.
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Figure 5: Variations of mode M1’s (a) phase velocity 𝑐𝑠,𝑟 /𝑄∞ and (b) growth rate
𝜔𝑠,𝑟 /𝑄∞[1/m] with the Floquet detuning parameter in the TCNE benchmark case.

Different 𝑁sd are used and 𝑠 = 1.0 m.

M2 and M3 modes) are listed in table 1 with different 𝑁sd in the TCNE benchmark case. As
can be seen, the relative errors between the results with 𝑁sd = 18 and 20 are all less than
10−4, so 𝑁sd = 18 is adopted for the calculation in the article, which is comparable with those
required for lower-speed flows (Koch et al. 2000; Xu et al. 2019). Note that the required 𝑁sd
here is much larger than that for the second mode where 𝑁sd is generally less than 4 (Herbert
1988), so the computational cost is dramatically higher. For a further test of convergence,
the variation of mode M1’s 𝜔𝑠 with 𝜎𝑑 is also calculated. Theoretically, a fully converged
solution should give identical results when 𝜎𝑑 differs by an integer, because this shift in
𝜎𝑑 only replaces the harmonics of the largest spanwise wavenumber in q̃2,sd. As shown in
figure 5, the eigenvalues with 𝑁sd = 10 and 14 are not yet fully converged, while the results
with 𝑁sd = 18 meet the 𝜎𝑑-periodic requirement. The phase velocity is less sensitive to 𝜎𝑑

than the growth rate, and the latter experiences a variation of ±6 % in figure 5(b). Compared
with that of the second mode, the effect of 𝜎𝑑 on the secondary crossflow instability is
negligible. Therefore, no distinctions are made between the fundamental, subharmonic and
detuned modes, and 𝜎𝑑 = 0 is adopted in the article. In order to assure a justified base
flow, the 𝑁max in the NPSE calculation is varied, and the secondary crossflow instability is
calculated based on different base flows. Figure 6 provides the growth rates of modes M1
and M2 with 𝑁max = 24, 32 and 40, respectively. As can be seen, the results with 𝑁max = 24
have relatively large deviations from the others, especially in the high-wavenumber region.
The base flow with 𝑁max = 32 provides adequate accuracy for the secondary instability
calculations of stationary crossflow vortices.
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Figure 6: Growth rates of modes M1 and M2 at different streamwise wavenumbers in the
TCNE benchmark case. Different 𝑁max are used in the base flow calculations and 𝑠 is

1.0 m.
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