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1 Differential Operators in Streamfunction Co-
ordinates

The gradient∇, divergence∇· and Laplacian∇2 operators in orthogonal stream-
function coordinates are respectively

∇ =
ĝ1

h1

∂

∂ξ1
+

ĝ2

h2

∂

∂ξ2
+

ĝ3

h3

∂

∂ξ3
, (1)

∇ · a =
1

h1h2h3

[
∂

∂ξ1
(h2h3â1) +

∂

∂ξ2
(h1h3â2) +

∂

∂ξ3
(h1h2â3)

]
, (2)

∇2 =
1

h1h2h3

[
∂

∂ξ1

(
h2h3
h1

∂

∂ξ1

)
+

∂

∂ξ2

(
h1h3
h2

∂

∂ξ2

)
+

∂

∂ξ3

(
h1h2
h3

∂

∂ξ3

)]
,

(3)

where the physical vector a = â1ĝ1 + â2ĝ2 + â3ĝ3, and (1) simplifies the Darcy
equation to

v(φ, ψ1, ψ2) = −k∇φ =
k

h1
ĝ1 = vĝ1, (4)

= ∇ψ1 ×∇ψ2 =
1

h2
ĝ2 ×

1

h3
ĝ3 =

1

h2h3
ĝ1. (5)

The derivatives of the unit basis vectors ĝj in the orthogonal streamfunction
coordinate system are then

∂gj

∂ξk
= Γi

kjgi ⇒ Γi
kj

1

h2i

∂gk

∂ξj
· gi, i = 1 : 3, j = 1 : 3, k = 1 : 3, (6)

where Γi
kj is the Christoffel symbol of the second kind. For orthogonal coordi-

nate systems, the six Christoffel symbols with distinct indices are zero

Γk
ij = 0, i 6= j 6= k 6= i, (7)

as well as the three symbols with the same indices

Γi
ii = 0. (8)
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There are only six distinct Christoffel symbols symbols of the remaining 18
(from an original of 27) due to symmetry relations Γi

ij = Γi
ji. Six of these are

related as

Γi
ij = Γi

ji = −
h2j
h2i

Γj
ii, i 6= j, (9)

and the remaining three symbols are Γi
ii. For orthogonal coordinate systems,

gi · gi = h2i , hence

1

2

∂

∂ξj
(gi · gi) =

∂gi

∂ξj
· gi = h2i Γi

ij = hi
∂hi
∂ξj

, (10)

and so the non-zero Christoffel symbols are explicitly

Γi
ij =

1

hi

∂hi
∂ξj

Γi
jj = −hj

hi

∂hj
∂ξi

. (11)

The vector gradient in the streamfunction covariant and physical basis is then

∇a =
1

h2j

(
∂ai

∂ξj
+ akΓi

kj

)
gi⊗gj =

1

hj

(
∂âi
∂ξj
− âiΓi

ij +
hi
hk
âkΓi

kj

)
ĝi⊗ĝj , (12)

which we use in Section 5 to derive en expression for the velocity gradient in
streamfunction coordinates.

2 Proof That Orthogonal Streamline Coordinates
Correspond to Zero Helicity Density Flow

In §§3.1 of the main paper, we assumed orthogonality of the streamfunction
pair (ψ1, ψ2) admitted by isotropic Darcy flow. Here we prove that orthogonal
streamlines coordinates correspond to zero helicity density flow. A streamfunc-
tion representation of the vorticity is obtained by taking the curl of equation
(2.8) in the main paper to yield

ω = ∇ψ2 · ∇∇ψ1 −∇ψ1 · ∇∇ψ+
2 ∇2ψ2∇ψ1 −∇2ψ1∇ψ2, (13)

which upon taking the dot product with velocity yields the helicity-free condition
for the streamfunctions as

h = ω · v = (∇ψ2 · ∇∇ψ1 −∇ψ1 · ∇∇ψ2) · (∇ψ1 ×∇ψ2)

= (∇ψ2 · ∇∇ψ1 −∇ψ1 · ∇∇ψ2) · ∇φ = 0.
(14)

We now show that if we assume the existence of the orthogonal streamline
coordinate system, then this helicity-free condition is automatically satisfied.
Taking the gradient of the orthogonality condition ∇ψ1 · ∇ψ2 = 0 yields ∇ψ1 ·
∇∇ψ2 +∇ψ2 · ∇∇ψ1 = 0, hence the helicity-free condition (14) simplifies to

∇ψ1 · ∇∇ψ2 · ∇φ = ∇ψ2 · ∇∇ψ1 · ∇φ = 0. (15)
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as k 6= 0 everywhere. From (1), (12), the Hessian operator ∇∇ in the streamline
coordinate system is

∇∇ =

(
∂2

∂ξi∂ξj
− Γk

ij

∂

∂ξk

)
ĝi ⊗ ĝj , (16)

where Γk
ij are the second Christoffel symbols of the streamline coordinate sys-

tem. In orthogonal coordinates Γk
ij = 0 for distinct i, j, k, hence the ĝk ⊗ ĝj

and ĝj ⊗ ĝk components (where i 6= j 6= k 6= i) of ∇∇ξi are both zero. As such,
the helicity-free condition (15)

∇ξj · ∇∇ξi · ∇ξk = 0 for i 6= j 6= k 6= i, (17)

is satisfied if the streamfunction pair (ψ1, ψ2) is orthogonal.

3 Derivation of Streamfunction Governing Equa-
tions

To derive governing equations for the streamfunctions ψ1, ψ2 we take the curl
of equation (2.8) in the main paper to yield

∇×v = ∇φ×∇k = ∇ψ2 ·∇∇ψ1−∇ψ1 ·∇∇ψ2 +∇2ψ2∇ψ1−∇2ψ1∇ψ2. (18)

Re-writing ∇φ as −1/k(∇ψ1 ×∇ψ2) and using ∇(∇ψ1 · ∇ψ2) = 0 then gives(
∇2ψ1 −∇f · ∇ψ1

)
∇ψ2 −

(
∇2ψ2 −∇f · ∇ψ2

)
∇ψ1 =2∇ψ2 · ∇∇ψ1

= −2∇ψ1 · ∇∇ψ2,
(19)

where f = ln k. From (15), we may write without loss of generality

∇ψ1 · ∇∇ψ2 = a1∇ψ1 − a2∇ψ2, (20)

and from equation (3.4) in the main paper, the scalars satisfy

a1 =
∇ψ1 · ∇∇ψ2 · ∇ψ1

∇ψ1 · ∇ψ1
= −∇ψ2 · ∇∇ψ1 · ∇ψ1

∇ψ1 · ∇ψ1
, (21)

a2 =
∇ψ2 · ∇∇ψ1 · ∇ψ2

∇ψ2 · ∇ψ2
= −∇ψ1 · ∇∇ψ2 · ∇ψ2

∇ψ2 · ∇ψ2
. (22)

Taking the dot product of (19) with respect to ∇ψ1 and ∇ψ2 yields the coupled
equations for the streamfunctions

∇2ψ1 −∇f · ∇ψ1 = −2a2, (23)

∇2ψ2 −∇f · ∇ψ2 = −2a1. (24)

Using (20)-(22) along with ∇(∇ψi · ∇ψi) = 2∇∇ψi · ∇ψi then yields equations
(3.6), (3.7) in the main paper.
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4 Demonstration Governing Equations Gener-
ate Orthogonal Streamfunctions

To show that equations (3.6), (3.7) in the main paper give rise to a pair of
orthogonal streamfunctions, we take the cross product of ∇ψ1 with equation
(2.8) in the main paper to yield an expression for ∇ψ2 which is orthogonal to
both ∇ψ1 and ∇φ:

∇ψ2 =
k

|∇ψ1|2
(∇ψ1 ×∇φ). (25)

We can show that this gradient satisfies equation (3.7) in the main paper. by
substituting (25):

∇2ψ2 −∇f · ∇ψ2 =
1

|∇ψ1|2
∇ · (∇ψ1 × k∇φ) + (∇ψ1 × k∇φ) · ∇

(
|∇ψ1|−2

)
− 1

|∇ψ1|2
∇f · (∇ψ1 × k∇φ).

(26)

We note that∇·(∇ψ1×k∇φ) = ∇f ·(∇ψ1×k∇φ) and k∇φ×∇ψ1 = ∇ψ2|∇ψ1|2,
then

∇2ψ2 −∇f · ∇ψ2 = |∇ψ1|2∇
(
|∇ψ1|−2

)
· ∇ψ2, (27)

which is equivalent to equation (3.7) in the main paper.

5 Derivation of Velocity Gradient in Stream-
function Coordinates

To derive an expression for the advected velocity gradient ε(t) in streamfunction
coordinates (i.e., where ε(t) ≡ ∇v(ξ(Ξ, t), t)>, we first use (12) to derive an
expression for the stationary velocity gradient l(ξ) ≡ ∇v(ξ)> (i.e. at fixed
coordinates ξ) and then transform this into the moving frame ξ(Ξ, t). As the
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velocity is v = vĝ1, then from the components of l(ξ) = lij ĝi ⊗ ĝj are then

l11 =
1

h1

(
∂v

∂φ
− vΓ1

11 + vΓ1
11

)
=

1

h1

∂v

∂ξ1
=
∂v

∂s
, (28)

l22 =
1

h2

(
0− 0 +

h2
h1
vΓ2

12

)
=

v

h1h2

∂h2
∂ξ1

= −1

2

∂v

∂s
+
v

2

∂ lnm

∂s
, (29)

l33 =
1

h3

(
0− 0 +

h3
h1
vΓ3

13

)
=

v

h1h3

∂h3
∂ξ1

= −1

2

∂v

∂s
− v

2

∂ lnm

∂s
, (30)

l12 =
1

h2

(
∂v

∂ξ2
− vΓ1

12 +
h1
h2
vΓ1

12

)
=

1

h2

∂v

∂ξ2
=

∂v

∂ψ1
, (31)

l13 =
1

h3

(
∂v

∂ξ2
− vΓ1

13 +
h1
h3
vΓ1

13

)
=

1

h3

∂v

∂ξ3
=

∂v

∂ψ2
, (32)

l21 =
1

h1

(
0− 0 +

h2
h1
vΓ2

11

)
= − 1

h1

∂h1
∂ξ2

=
∂v

∂ψ1
− v ∂ ln k

∂ψ1
, (33)

l31 =
1

h1

(
0− 0 +

h3
h1
vΓ3

11

)
= − 1

h1

∂h1
∂ξ3

=
∂v

∂ψ2
− v ∂ ln k

∂ψ2
, (34)

l23 =
1

h3

(
0− 0 +

h2
h3
vΓ2

13

)
= 0, (35)

l32 =
1

h2

(
0− 0 +

h3
h2
vΓ3

12

)
= 0. (36)

Note the components l23 = l32 = 0 are a direct consequence of the helicity-free
nature of the flow. The velocity gradient may also be expressed in terms of the
normalised Jacobian from the identity dξ = Ĵ> ·dx, and by taking the temporal
derivative of this expression yields

dξ

dt
= Ĵ> · dx

dt
+
dĴ>

dt
· dx ⇔ v(ξ) = Ĵ> · v(x) +

dĴ>

dt
· dx, (37)

where the Jacobian may be considered time-dependent if the frame of reference is
moving with the fluid particle with trajectory ξ(Ξ, t) or in Cartesian coordinates
x(X, t). Further differentiating with respect to ξ yields the velocity gradient in
the moving frame as

∇v(ξ(Ξ, t)) = Ĵ> · ∇v(x(X, t)) · Ĵ +
dĴ>

dt
· Ĵ, (38)

whereas in the stationary frame

l(ξ)> = ∇v(ξ) = Ĵ> · ∇v(x) · Ĵ, (39)

hence

ε(Ξ, t) = l(ξ) + A(t), A(t) ≡ dĴ>

dt
· Ĵ, (40)
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and since Ĵ> · Ĵ = I, then A(t) = −A(t)>. As Ĵ = [ĝ1, ĝ2, ĝ3], then the
skew-symmetric matrix A(t) has components

A(t) ≡ dĴ>

dt
· Ĵ =

 0 ĝ2 · ˙̂g1 ĝ3 · ˙̂g1

−ĝ2 · ˙̂g1 0 ĝ3 · ˙̂g2

−ĝ3 · ˙̂g1 −ĝ3 · ˙̂g2 0

 . (41)

The components of A(t) can be related to l(ξ) via the relationships v̇ = ε(t) ·v,
ĝ1 = v/v, lij = ĝi · l(ξ) · ĝj , yielding

ĝ2 · ˙̂g1 = ĝ2 · l(ξ) · ĝ1 = l21, (42)

ĝ3 · ˙̂g1 = ĝ3 · l(ξ) · ĝ1 = l31. (43)

Furthermore, as the helicity is an invariant quantity, then the advected velocity
gradient satisfies

h ≡ v · (∇× v) = v · (ε : ∇v) = viεijk ε̂jk = 0, (44)

where ε is the Levi-Civita tensor

εijk =


+1 if (i, j, k) is an even permutation,

−1 if (i, j, k) is an odd permutation,

0 otherwise,

(45)

and so as v = vĝ1, then
h = v(ε̂23 − ε̂32) = 0, (46)

and from (40), ĝ3 · ˙̂g2 = 0. From these results the components of the advected
velocity gradient tensor are then

ε[ξ(Ξ, t)] =

 ε̂11 ε̂12 ε̂13
0 ε̂22 0
0 0 ε̂33

 =

 l11 l12 + l21 l13 + l31
0 l22 0
0 0 l33

 , (47)

as is given in equations (4.15), (4.16) in the main paper.

6 Calculation of Transverse Stretching Direc-
tions and Magnitudes

To compute the transverse stretching directions and magnitudes along the ref-
erence streamline shown in Figure 1(c) in the main paper, the Cartesian defor-
mation tensor F (X, t) is first computed from equation (4.4) in the main paper.
At any point along the reference streamline, this tensor may then rotated to
align with the velocity vector via the rotation matrix

Q(t) = cos θ(t) I + sin θ(t)(q(t))>× − cos θ(t)q(t)⊗ q(t), (48)
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where ()×is the cross product matrix, and q(t), θ(t) are the rotation axis and
angle that rotates the e1 vector of the Cartesian frame to align with the local
velocity vector v(t) = {v1, v2, v3}> = viei:

q(t) =
e1 × v

||e1 × v||
=

1√
v22 + v23

{0, v3,−v2}>, (49)

cos θ(t) =
e1 · v
||v||

=
v1
v
. (50)

This reoriented coordinate frame is denoted as x′ = {x′1, x′2, x′3}> = x′ie
′
i, which

is related to the Cartesian frame as Truesdell (1954)

x′ = x0(t) + Q>(t) · x, (51)

where the translation vector x0(t) is the position vector along the reference
streamline. Note that this rotation into the streamwise direction does not nec-
essarily align with the streamfunction coordinate directions as the transverse
coordinates e′2, e′3 do not align with the coordinates ψ1, ψ2. The deformation
gradient tensor then transforms between these frames as

F′(t) = Q>F(t)Q(0), (52)

and the fluid deformation transverse to the streamwise direction is given by the
projection F′2D(t) = PF′(t)P, where P = diag(0, 1, 1), yielding

F′2D(t) =

(
F ′22 F ′23
F ′32 F ′33

)
. (53)

Conversely, the corresponding deformation tensor F2D(t) in streamfunction co-
ordinates is diagonal due to the helicity-free condition. Thus the principal
stretches and associated stretching directions of F′2D(t) give both the compo-

nents F̂22, F̂33 and the corresponding coordinate directions of the streamfunction
coordinate frame. As F′2D(t) is in general not diagonalizable, we perform the
singular value decomposition (SVD)

F′2D(t) = AΣB>, (54)

where A and B are unitary (diagonalizable) matrices and Σ is diagonal. The
SVD allows representation of F′2D(t) in terms of the right U and left V stretch
tensors via the polar decomposition theorem as

F′2D(t) = RU = VR, (55)

where the rotation matrix R = AB, and the stretch tensors are U = B>ΣB,
V = A>ΣA. Thus the eigenvectors of U, V are respectively given by A =
(s1, s2)>, B and the eigenvectors of both U and V are given by the diagonal
components of Σ = diag(Σ1,Σ1), where Σ1 = F̂22, Σ2 = F̂33. Hence the vectors
Σ1s1, Σ2s2 correspond to the principal axes of the transverse deformation in the
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R>x′ frame. These vectors can then be rotated back into the Cartesian frame
to give the principal axes as

dr(t) = Σ1Q(t)R3Ds1, (56)

dq(t) = Σ2Q(t)R3Ds2, (57)

where

R3D =

 0 0 0
0 R11 R12

0 R21 R22

 . (58)

Thus the vectors dr(t), dq(t) indicates the directions of the streamfunction
coordinates ψ1, ψ2, and their magnitude quantifies the relative streamfunction
gradients |dr(t)| = |∇ψ1(t)|/|∇ψ1(0)|, |dq(t)| = |∇ψ2(t)|/|∇ψ2(0)|.
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