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1. Details of linear Kelvin–Voigt analytical solution7

Here we detail the analytical solution in case of a linear Kelvin–Voigt solid. The solution is

𝑣̂ 𝑓 (𝑦̃) = 𝐴 exp
(
𝑘 𝑓

𝑦̃

𝐿 𝑓

)
+ 𝐵 exp

(
−𝑘 𝑓

𝑦̃

𝐿 𝑓

)
𝑦̃ ∈ [0, 𝐿 𝑓 )

𝑢̂𝑠(𝑦) = 𝐶 exp
(
𝑘𝑠

𝑦

𝐿𝑠

)
+ 𝐷 exp

(
−𝑘𝑠

𝑦

𝐿𝑠

)
𝑦 ∈ [0, 𝐿𝑠),

where we determine the coefficients 𝐴, 𝐵, 𝐶, 𝐷 using the boundary (Main text Eq. 2.8) and8
interface conditions (Main text Eq. 2.7), which lead to the following system of equations9
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with11

𝑀33 = −𝑖𝜔
𝑘𝑠
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(1.2)12
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which we can solve for to yield the final solutions. The resulting coefficients are13

𝑘 𝑓 =
(1 + 𝑖)
√
2

(
𝐿−1𝑓

(
𝜈 𝑓 /𝜔

)0.5)−1 = exp (𝑖𝜋/4)𝛿−1𝑓
𝑘𝑠 =

𝑖√︂(
(𝜔𝐿𝑠)−1 (2𝑐1/𝜌𝑠)0.5

)2
+ 𝑖

(
𝐿−1𝑠 (𝜈𝑠/𝜔)0.5

)2 = 𝑖 (𝜆2 + 𝑖𝛿2𝑠)−0.5
𝛼 =

𝐿 𝑓

𝐿𝑠

𝑘𝑠

𝑘 𝑓

(
𝜌𝜈 − 𝑖 ¤𝛾

𝐸𝑟

)
𝐴 = 𝑉̂wall

[ (
𝑒−𝑘𝑠

)
(1 − 𝛼) −

(
𝑒+𝑘𝑠

)
(1 + 𝛼)

][ (
𝑒𝑘 𝑓 −𝑘𝑠 − 𝑒−(𝑘 𝑓 −𝑘𝑠)

)
(1 − 𝛼) −

(
𝑒𝑘 𝑓 +𝑘𝑠 − 𝑒−(𝑘 𝑓 +𝑘𝑠)

)
(1 + 𝛼)

]
𝐵 = 𝑉̂wall
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−𝑒𝑘𝑠
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(1 − 𝛼) +

(
𝑒−𝑘𝑠

)
(1 + 𝛼)

][ (
𝑒𝑘 𝑓 −𝑘𝑠 − 𝑒−(𝑘 𝑓 −𝑘𝑠)

)
(1 − 𝛼) −
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𝑒𝑘 𝑓 +𝑘𝑠 − 𝑒−(𝑘 𝑓 +𝑘𝑠)

)
(1 + 𝛼)

]
𝐶 =

−2𝑉̂wall
𝑖𝜔

1[ (
𝑒𝑘 𝑓 −𝑘𝑠 − 𝑒−(𝑘 𝑓 −𝑘𝑠)

)
(1 − 𝛼) −

(
𝑒𝑘 𝑓 +𝑘𝑠 − 𝑒−(𝑘 𝑓 +𝑘𝑠)

)
(1 + 𝛼)

]
𝐷 = −𝐶

(1.3)14

We note here that 𝑘 𝑓 and 𝑘𝑠 denote the fluid and solid wave contributions and 𝛼 represents15
the degree of fluid–solid coupling.16

2. Piecewise linear functions as particular solutions17

Here, wemotivate the natural choice of using piecewise linear functions in our series solution18
for the fluid and solid domains (Main text Eq. 3.5), in addition to the Fourier sine series.19
Indeed, if we consider the simpler Couette flow case, i.e. only viscous fluid between two20
parallel plates (at 𝐿 = 0 and 𝐿 = 𝐿wall, with the top wall moving with 𝑉wall), the trivial21
solution lying in the nullspace of the governing continuity and momentum equations (Main22
text Eq. 2.4) is 𝑣(𝑦) = 𝑉wall𝑦/𝐿wall. Formally, this trivial solution is a particular solution23
of the governing linear PDE, arising due to an inhomogeneity caused by a non-zero wall24
velocity (boundary conditions and forcing terms are interchanged by Duhamel’s principle).25
One can then view Eq. 3.5 as a superposition of the particular solution and homogeneous26
solution to the governing PDE.27

3. Useful identities in Fourier bases28

We proceed by utilizing the following orthogonality and integral relations for Fourier basis29
functions, given 𝑘, 𝑙 ̸= 030

Orthogonality relations
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𝐿
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2
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Integral relations

∫𝐿
0
sin

𝜋𝑘𝑦

𝐿
=
𝐿
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[
1 − (−1)𝑘

]
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0
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𝐿
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𝜋𝑘𝑦

𝐿
=
𝐿

𝜋𝑘

(
−(−1)𝑘

)
(3.1)31
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where 𝛿𝑘𝑙 is the delta function, used in a pointwise sense.32

4. Details of linear Kelvin–Voigt modal solution33

Here we detail the closed-form modal solution in the case of a linear Kelvin–Voigt solid. We34
represent the solution 𝑢(𝑦, 𝑡), 𝑣(𝑦, 𝑡) using the Fourier sine series only in the upper half space35
𝑦 ≥ 0, as follows36

𝑣 𝑓 (𝑦̃, 𝑡) = 𝑉𝐼 (𝑡) +
𝑦̃

𝐿 𝑓
(𝑉wall(𝑡) −𝑉𝐼 (𝑡)) +

∞∑︁
𝑘=1

𝑣 𝑓 ,𝑘(𝑡) sin
𝜋𝑘 𝑦̃

𝐿 𝑓

𝑢𝑠(𝑦, 𝑡) =
𝑈𝐼 (𝑡)𝑦
𝐿𝑠

+
∞∑︁
𝑘=1

𝑢𝑠,𝑘(𝑡) sin
𝜋𝑘𝑦

𝐿𝑠

(4.1)37

where 𝑈𝐼 (𝑡), 𝑉𝐼 (𝑡) is the displacement and velocity of the solid–fluid interface at 𝑦 = 𝐿𝑠,
𝑦̃ = 𝑦 − 𝐿𝑠, and 𝑣 𝑓 ,𝑘(𝑡) and 𝑢𝑠,𝑘(𝑡) are the Fourier expansion coefficients of 𝑣 𝑓 and 𝑢𝑠,
respectively.

𝑉𝐼 (𝑡) = Im
[
𝑉̂𝐼 exp(𝑖𝜔𝑡)

]
𝑣 𝑓 ,𝑘(𝑡) = Im

[
𝑣̂ 𝑓 ,𝑘 exp(𝑖𝜔𝑡)

]
𝑢𝑠,𝑘(𝑡) = Im

[
𝑢̂𝑠,𝑘 exp(𝑖𝜔𝑡)

]
,

with the immediate implication that

𝑈𝐼 (𝑡) = Im
[
𝑉̂𝐼

𝑖𝜔
exp(𝑖𝜔𝑡)

]
𝑣𝑠,𝑘(𝑡) =

d𝑢𝑠,𝑘
d𝑡

= Im
[
𝑖𝜔𝑢̂𝑠,𝑘 exp(𝑖𝜔𝑡)

]
d2𝑢𝑠,𝑘
d𝑡2

= Im
[
−𝜔2𝑢̂𝑠,𝑘 exp(𝑖𝜔𝑡)

]
.

Substitution of the temporal transformed quantities above in the momentum ODEs and
considering the boundary, interface conditions give the following expression for 𝑣̂ 𝑓 ,𝑘 , 𝑢̂𝑠,𝑘 , 𝑉̂𝐼 .

𝑣̂ 𝑓 ,𝑘 =
{
(−1)𝑘𝑉̂wall − 𝑉̂𝐼

}
𝛼𝑘

𝜋𝑘

𝑢̂𝑠,𝑘 = −
𝑖(−1)𝑘𝑉̂𝐼 𝛽𝑘

𝜋𝜔𝑘

𝑉̂𝐼 =
𝑉̂wall

(
1 +∑𝐾−1

𝑘=1 (−1)
𝑘𝛼𝑘

)(
1 +∑𝐾−1

𝑘=1 𝛼𝑘
)
+

(
𝐿 𝑓

𝐿𝑠

) [(
𝜈𝑠
𝜈 𝑓

) (
𝜌𝑠
𝜌 𝑓

)
− 𝑖

(
2𝑐1
𝜔𝜇 𝑓

)] (
1 +∑𝐾−1

𝑘=1 𝛽𝑘
)

where

𝛼𝑘 =
2

1 − 𝑖𝜋2𝑘2
(
𝐿 𝑓

−1 (
𝜈 𝑓 /𝜔

)0.5)2
𝛽𝑘 =

2

1 − 𝜋2𝑘2
[(
(𝜔𝐿𝑠)−1 (2𝑐1/𝜌𝑠)0.5

)2
+ 𝑖

(
𝐿𝑠

−1 (𝜈𝑠/𝜔)0.5
)2] .

The expressions above can then be directly used in Eq. 4.1 to analytically evaluate solid38
displacements, fluid velocities and solid velocities, respectively.39
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fluid
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Figure 1: Comparison of direct analytical and modal solutions. Plotting the
non-dimensional velocity profiles for a linear Kelvin–Voigt solid using the direct analytical
(solid red line) and modal solutions (dashed black line) reveals good agreement across all
times. The system is characterized by the same parameters as Figure 3 in the main text.

5. Comparison of direct analytical and modal solutions40

Here, we showcase comparison between our direct analytical solutions discussed in Section 141
and modal solutions discussed in Section 4 for a representative set of parameters. We overlay42
the velocity profiles obtained by these methods in Fig. 1 to see favorable comparison across43
all time instants. Hence our solutions, although obtained via different approaches, give the44
same results.45

6. Parameter details46

Here, for the purposes of repeatability and reproducibility, we document the parameter sets47
used to generate the results shown in the figures of our manuscript. We list the figure first48
and then tabulate the parameters used.49

6.1. Figure 250

The parameters used in this figure are 𝑅𝑒 = 0.25, 𝐸𝑟 = 1/(5𝜋), 𝜈 = 0, 𝛿 𝑓 = 1.12, 𝛿𝑠 = 0,51
𝜆 = 2.52, 𝐿 = 2, 𝐿𝑠 = 𝐿 𝑓 = 𝐿/4, 𝜌 𝑓 = 𝜌𝑠 = 1, 𝜇 𝑓 = 1.0, 𝜇𝑠 = 0.0, 𝑐1 = 2.5, 𝑐3 = 0,52

𝑉̂wall = 1.0, 𝜔 = 𝜋, ¤𝛾 = 𝜋−1.53

6.2. Figure 354

The system here is characterized by 𝑅𝑒 = 2, 𝐸𝑟 = 1, 𝜈 = 0.1, 𝛿 𝑓 = 0.4, 𝛿𝑠 = 0.126, 𝜆 = 0.225,55
𝐿 = 0.8, 𝐿𝑠 = 𝐿 𝑓 = 𝐿/4 = 0.2, 𝜌 𝑓 = 𝜌𝑠 = 1, 𝜇 𝑓 = 0.02, 𝜇𝑠 = 0.1𝜇 𝑓 , 𝑐1 = 0.01, 𝑐3 = 0,56

𝑉̂wall = 0.4, 𝜔 = 𝜋, ¤𝛾 = 𝜋−1.57

6.3. Figure 658

The system here is characterized by 𝑅𝑒 = 2, 𝐸𝑟 = 1, 𝜈 = 0.1, 𝑐 = 𝑐3/𝑐1 = 4, 𝛿 𝑓 = 0.4, 𝛿𝑠 =59
0.126, 𝜆 = 0.225, 𝐿 = 0.8, 𝐿𝑠 = 𝐿 𝑓 = 𝐿/4 = 0.2, 𝜌 𝑓 = 𝜌𝑠 = 1, 𝜇 𝑓 = 0.02, 𝜇𝑠 = 0.1𝜇 𝑓 ,60

𝑐1 = 0.01, 𝑐3 = 0.04, 𝑉̂wall = 0.4, 𝜔 = 𝜋, ¤𝛾 = 𝜋−1.61

Focus on Fluids articles must not exceed this page length
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wall
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wall
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wall
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Figure 2: No elastic limit. Non-dimensional velocity profile in 𝑦 when the solid is replaced
by a viscous fluid. The system response is shown only for the upper half plane, for viscosity
ratios 𝜈 = 𝜈1/𝜈2 = (a) 0.1, (b) 1 and (c) 10. We compare our results with the reference
Stokes–Couette solution (Landau & Lifshitz 1987) in (b) and two-fluid Stokes–Couette
solution (Sim 2006; Leclaire et al. 2014) in (a) and (c). The reference solutions are shown
in black dashed lines, and we find them in agreement with our solution. This system is
characterized by 𝑅𝑒 = 2, 𝛿 = 0.4. Other parameters used are 𝐿𝑠 = 𝐿 𝑓 = 𝐿/4 = 0.2,
𝜌 𝑓 = 𝜌𝑠 = 1, 𝜇 𝑓 = 0.02, 𝑐1 = 0, 𝑐3 = 0, 𝑉̂wall = 0.4, 𝜔 = 𝜋. Colors represent 𝑡/𝑇 .

The parameters used for the 2D DNS are LCFL = 0.05,CFL = 0.1 with a resolution of62
[512]2 in a domain of physical extent [0, 1]2. We employ periodic and unbounded boundary63
conditions in the 𝑥 and 𝑦 directions, respectively. The periodic boundary condition allows us64
to impose homogeneity in the 𝑥 direction. In all cases shown, the system starts from rest in65
a stress free state and the simulation is run well beyond the initial transient phase, resulting66
in periodic dynamics. The reader is referred to Bhosale et al. (2021) for more simulation67
details, and for interpretation of the CFL, LCFL and resolution parameters.68

7. Details on limit cases69

Here, we present comparison with available analytical solutions in the limit of 𝑐1 = 0, as70
discussed in the main text. This limit indicates an absence of elastic forces in the solid phase.71
Hence, only viscous forces operate in the solid, effectively rendering it a Newtonian fluid.72
First, if 𝑐1 = 0 and 𝜇𝑠 = 𝜇 𝑓 = 𝜇 and 𝜌𝑠 = 𝜌 𝑓 = 𝜌, i.e. when the entire domain is occupied by73
a single fluid, we recover the Stokes–Couette flow solution (Landau & Lifshitz 1987) valid74
throughout the domain. This is confirmed in Fig. 2b, where we see how our solution well75
agrees with the reference Stokes–Couette solutions, depicted in black dashed lines. Details76
on the reference Stokes–Couette solution can be found in Section 7.1.77
Next, still within the 𝑐1 = 0 limit but now with 𝜇𝑠 ̸= 𝜇 𝑓 or 𝜌𝑠 ̸= 𝜌 𝑓 , i.e. with the domain78

occupied by two different fluids, we recover the multi-phase Stokes–Couette flow for two79
immiscible liquids, which has established piecewise (in the two fluid domains) analytical80
solutions (Sim 2006; Leclaire et al. 2014) found in Section 7.2. We showcase our solutions81
for two viscosity ratios 𝜈 = 𝜈1/𝜈2 = 0.1 and 𝜈 = 10 in Fig. 2a,c, where subscripts 1, 2 indicate82
the bottom and top fluid respectively. Additionally, we overlay the reference solutions as black83
dashed lines. As can be seen, we find favorable agreement across all times.84
In all cases,Re = ¤𝛾𝜔𝐿22/𝜈2 = 2 ∼ O (1) and sowe expect inertial and viscous contributions85

to be approximately equally important. Note that here the system Reynolds number is defined86
through the viscosity 𝜈2 of fluid-2. Further, 𝛿2 = 0.4 which indicates that boundary layer87
effects operate in the bulk of fluid-2. This leads tomoderate velocity curvatures andmagnitude88
decay in fluid-2 across Fig. 2a,b,c. In the first case of Fig. 2a, fluid-1 is ten times less89
viscous than fluid-2. This leads to relatively high velocity gradients of fluid-1 at the interface90
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compared to fluid-2, reflecting the stress continuity condition (Main text Eq. 2.7)91

𝜕𝑦𝑣1

𝜕𝑦𝑣2
=
𝜈2

𝜈1
. (7.1)92

The low viscosity of fluid-1 additionally implies a sharper fluid-1 boundary layer at the93
interface with 𝛿1 = 0.13. Consequently, the velocity profiles have significant curvature94
within this layer in order for viscous forces to dissipate velocities to zero at the symmetry95
plane. In the second case (Fig. 2b), where 𝜈1 = 𝜈2 implies a single fluid, the velocity profiles96
are smooth at all points in the domain and approach zero at the symmetry plane with a nearly97
linear profile outside thewall boundary layer (𝛿 = 0.4).Meanwhile, in the third case of Fig. 2c,98
fluid-1 is ten times more viscous than fluid-2. This time the gradient jump (Eq. 7.1) across the99
interface in fluid-1 is comparatively smaller, which results in smaller fluid-1 oscillations. The100
high viscosity of fluid-1 leads to a boundary layer much larger than the fluid layer thickness,101
with 𝛿1 = 1.26. Hence, the velocity profiles are linear.102

7.1. Reference solution in the one fluid (no elastic solid) limit103

In the limit of 𝑐1 = 0 and 𝜇𝑠 = 𝜇 𝑓 = 𝜇 and 𝜌𝑠 = 𝜌 𝑓 = 𝜌, i.e. when the entire104
domain is occupied by a fluid of kinematic viscosity 𝜈, we recover the Stokes–Couette105
flow solution (Landau & Lifshitz 1987) below106

𝑣(𝑦, 𝑡) = 𝑉̂wallIm
[

sin(𝑘𝑦)
sin(𝑘(𝐿𝑠 + 𝐿 𝑓 ))

exp(𝑖𝜔𝑡)
]
; 𝑘 =

1 − 𝑖
√
2

√︂
𝜔

𝜈
107

valid throughout the domain. We showcased the comparison of this solution with our results108
in Fig. 2b.109

7.2. Reference solution in the two fluid (no elastic solid) limit110

In the limit of 𝑐1 = 0, but now with 𝜇𝑠 ̸= 𝜇 𝑓 or 𝜌𝑠 ̸= 𝜌 𝑓 , i.e. with the domain occupied by two111
different fluids, we recover the multi-phase Stokes–Couette flow between two immiscible112
liquids, which has established piecewise (in the two fluid domains) analytical solutions (Sim113
2006; Leclaire et al. 2014).114
The solutions, for a setup with 𝐿1 = 𝐿2 = 𝐿/2, is given by115

𝑣1(𝑦̂, 𝑡) = 𝑉̂wallIm [(𝐶12 exp (𝜆1 𝑦̂) + 𝐶11 exp (−𝜆1 𝑦̂)) exp(𝑖𝜔𝑡)] 𝑦̂ ∈ [−1, 0)
𝑣2(𝑦̂, 𝑡) = 𝑉̂wallIm [(𝐶22 exp (𝜆2 𝑦̂) + 𝐶21 exp (−𝜆2 𝑦̂)) exp(𝑖𝜔𝑡)] 𝑦̂ ∈ [0, 1],

(7.2)116

where 𝑦̂ = 2𝑦/𝐿 − 1 and117

𝜆1 = (1 + 𝑖)
√︁

Re1/2

𝜆2 = (1 + 𝑖)
√︁

Re2/2,
(7.3)118

with Re1 =
𝜔𝐿2

4𝜈1
,Re2 =

𝜔𝐿2

4𝜈2
. We determine the constants 𝐶11, 𝐶12, 𝐶21, 𝐶22 using the119

boundary and interface conditions, which leads to the following system of equations120

©­­­«
e𝜆2 e−𝜆2 0 0
1 1 −1 −1
𝜆2 −𝜆2 𝑀33 𝑀34
0 0 e−𝜆1 e𝜆1

ª®®®¬ ·
©­­­«
𝐶22
𝐶21
𝐶12
𝐶11

ª®®®¬ =
©­­­«
1
0
0
0

ª®®®¬ , (7.4)121
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Parameter Minimum Maximum

Experimentally set quantities

¤𝛾 0.01 (Shankaran & Neelamegham 2001) 100 (Shankaran & Neelamegham 2001)
𝜔 2𝜋0.1 rad s−1 (Wu et al. 2018) 2𝜋10 rad s−1 (Wu et al. 2018)
𝐿 𝑓 10 µm (Desprat et al. 2006) 100 µm (Duncombe et al. 2015)
𝜈 𝑓 1 × 10−6m2/s (Cheng 2008) 1 × 10−3m2/s (Cheng 2008)
𝜌 𝑓 1 × 103 kg/m3 (Volk & Kähler 2018) 1.3 × 103 kg/m3 (Volk & Kähler 2018)
𝐺 1 × 103 Pa (Guimarães et al. 2020) 15 × 103 Pa (Guimarães et al. 2020)

Derived quantities

Re 2𝜋 · 10−12 2𝜋 · 101
𝐸𝑟 4.19 · 10−10 8.1 · 100

Table 1: Range of parameters

with122

𝑀33 = −
Re2
Re1

𝜌1

𝜌2
𝜆1

𝑀34 = +
Re2
Re1

𝜌1

𝜌2
𝜆1

(7.5)123

which we then solve for. We showcased the comparison of this solution with our results124
in Fig. 2a,c. We remark that this setup is especially suited as a benchmark for two-fluid125
simulations since the interface does not deform (due to symmetry) and so curvature effects126
(such as those encountered while modeling surface tension effects) are identically absent.127
Hence only the terms contributing to interfacial stress jump are tested.128

8. Range of non-dimensional parameters129

Here we report our procedure for choosing the range of non-dimensional parameters in the130
main text. We first tabulate the potential range of parameters reported in literature for settings131
involving soft, biological tissues in Table 1. For angular frequencies, we assume values similar132
to parallel-plate cell visco-meters (Wu et al. 2018).We employ previously reported wall shear133
rates in biological soft tissue contexts (Shankaran & Neelamegham 2001). We assume that134
the device length scale varies between values reported for parallel plate rheometers (Desprat135
et al. 2006) and other microfluidic devices employed in cell biology (Duncombe et al. 2015).136
Next, for the fluid, we consider an aqueous glycerol solution, as it is biologically inert and137
cost-effective (Ayoub & Abdullah 2012). This choice is reflected in the viscosity (Cheng138
2008) and density (Volk & Kähler 2018) ranges for the fluid, from pure water to pure139
glycerol. Finally, the elastic shear modulus values we employ is consistent with those of soft140
cells and tissues (Guimarães et al. 2020).141
Then, based on the above experimentally-controlled quantities, we derive ranges for the142

non-dimensional parameters Re, 𝐸𝑟, showcased in Table 1. We then choose a subset that143
showcases the system’s dynamic richness, while spanning two orders of magnitude. This144
range corresponds to Re ∈ [0.1, 10] and 𝐸𝑟 ∈ [0.1, 10].145
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9. Details on the numerical solution for a nonlinear Kelvin–Voigt solid146

Here, we expand on the steps in deriving the numerical solution for a nonlinear Kelvin–Voigt147
solid. To make the content clear and presentable, we repeat some information provided in148
the main text.149
In the case of a nonlinear Kelvin–Voigt solid, characterized by 𝑐3 ̸= 0, the hyperelastic150

stress is proportional to the cubic power of strain in Main text Eq. 2.6 which signifies a higher151
order (w.r.t strain) non-linear response to deformations. In this case a numerical solution can152
be derived. First, we calculate the modal expansion coefficients of the nonlinear stresses153
𝜎NL,𝑘 in the governing equation Eq. 3.10 from the main text. For this calculation we employ154
a Fourier pseudospectral collocation scheme (Sugiyama et al. 2011). The following cosine155
orthogonality relation is useful in this case156 ∫𝐿

0
cos

𝜋𝑘𝑦

𝐿
cos

𝜋𝑙𝑦

𝐿
𝑑𝑦 =

𝐿

2
𝛿𝑘𝑙 (1 + 𝛿𝑘0) (9.1)157

Then upon transforming Main text Eq. 3.8 into the Fourier cosine bases and using Eq. 9.1,158
we obtain the following expression for 𝜎NL,𝑘159

𝜎NL,𝑘 ≈
8𝑐3

𝐾 (1 + 𝛿𝑘0)
𝐾−1∑︁
𝑗=0


𝑈𝐼

𝐿𝑠
+
𝐾−1∑︁
𝑙=1

𝜋𝑙𝑢𝑠,𝑙

𝐿𝑠
cos

𝜋𝑙

(
𝑗 + 12

)
𝐾


3

cos
𝜋𝑘

(
𝑗 + 12

)
𝐾

(9.2)160

which is approximate, with numerical errors incurred from truncation (discussed in Main161
text Section 3.2) and our choice of collocated quadrature, which is associated with the162
spatial discretization and sampling of the nonlinear term (𝜕𝑢𝑠/𝜕𝑦)3 at a finite set of points163

𝑥 𝑗 = ( 𝑗 +
1
2
)Δ𝑥, with Δ𝑥 = 𝐿𝑠/𝐾 .164

Next, we employ a numerical time integration scheme to evolve the non-linear Eqs. (3.9)165
and (3.10) from the main text. We use a second order constant timestepper comprised of166
mixed Crank-Nicolson (implicit, for stability in the viscous updates) and explicit Nyström167
(midpoint rule) for the higher order time derivatives (Hairer et al. 1991). The 𝑛th time level168
at 𝑡 = 𝑛Δ𝑡 is denoted by a superscript (𝑛). First, the prescribed wall velocity is169

𝑉
(𝑛+1)
wall := 𝑉wall((𝑛 + 1)(Δ𝑡)) = Im

[
𝑉̂wall exp(𝑖𝜔 ((𝑛 + 1)Δ𝑡))

]
(9.3)170

For the𝑈𝐼 update, which proceeds independently of the governing Eqs. (3.9) and (3.10) from171
the main text, we use the Crank-Nicolson scheme (Hairer et al. 1991), shown below172

𝑈
(𝑛+1)
𝐼

≈ 𝑈(𝑛)
𝐼
+
Δ𝑡

2

(
𝑉
(𝑛+1)
𝐼

+𝑉 (𝑛)
𝐼

)
+ O

(
Δ𝑡2

)
(9.4)173

We then turn our attention to the modal fluid momentum equation (Main text Eq. 3.9). For174
updating the fluid velocity modes with the action of the viscous terms, we once again utilize175
the Crank-Nicolson discretization at time level 𝑛176

2
𝜋𝑘

{
𝑉
(𝑛+1)
𝐼

−𝑉 (𝑛)
𝐼

Δ𝑡
− (−1)𝑘

𝑉
(𝑛+1)
wall −𝑉 (𝑛)wall

Δ𝑡

}
+
𝑣
(𝑛+1)
𝑓 ,𝑘

− 𝑣(𝑛)
𝑓 ,𝑘

Δ𝑡

= −𝜈 𝑓
(
𝜋𝑘

𝐿 𝑓

)2 1
2

(
𝑣
(𝑛+1)
𝑓 ,𝑘
+ 𝑣(𝑛)

𝑓 ,𝑘

)
+ O

(
Δ𝑡2

) (9.5)177

where we note that both wall and interface velocities on the LHS are discretized consistently178
with 𝑣 𝑓 ,𝑘 . Rearranging the terms in the equation above results in the following fluid mode179
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update, accurate up to second order in Δ𝑡180

𝑣
(𝑛+1)
𝑓 ,𝑘

=
𝐸 𝑓 ,𝑘

𝜁 𝑓 ,𝑘
(9.6)181

where182

𝐸 𝑓 ,𝑘 =
(
2 − 𝜁 𝑓 ,𝑘

)
𝑣
(𝑛)
𝑓 ,𝑘

−
2
{
𝑉
(𝑛+1)
𝐼

−𝑉 (𝑛)
𝐼

− (−1)𝑘𝛿𝑉wall
}

𝜋𝑘
(9.7)183

184

𝜁 𝑓 ,𝑘 = 1 + 𝜈 𝑓
Δ𝑡

2

(
𝜋𝑘

𝐿 𝑓

)2
(9.8)185

with186

𝛿𝑉wall = 𝑉 (𝑛+1)wall −𝑉 (𝑛)wall (9.9)187

Next, we focus on the modal solid momentum equation (Main text Eq. 3.10). Here, for188
updating solid displacements, we utilize the following explicit Nyström (midpoint rule)189
discretizations at the 𝑛th time step190 (

d𝑉𝐼
d𝑡

) (𝑛)
≈
𝑉
(𝑛+1)
𝐼

−𝑉 (𝑛−1)
𝐼

2Δ𝑡
+ O

(
Δ𝑡2

)
191

192 (
d𝑢𝑠,𝑘
d𝑡

) (𝑛)
≈
𝑢
(𝑛+1)
𝑠,𝑘

− 𝑢(𝑛−1)
𝑠,𝑘

2Δ𝑡
+ O

(
Δ𝑡2

)
193

194 (
d2𝑢𝑠,𝑘
d𝑡2

) (𝑛)
≈
𝑢
(𝑛+1)
𝑠,𝑘

− 2𝑢(𝑛)
𝑠,𝑘
+ 𝑢(𝑛−1)

𝑠,𝑘

(Δ𝑡)2
+ O

(
Δ𝑡2

)
195

Upon substituting these discretizations in Main text Eq. 3.10, we arrive at196

− 2(−1)
𝑘

𝜋𝑘

𝑉
(𝑛+1)
𝐼

−𝑉 (𝑛−1)
𝐼

2Δ𝑡
+
𝑢
(𝑛+1)
𝑠,𝑘

− 2𝑢(𝑛)
𝑠,𝑘
+ 𝑢(𝑛−1)

𝑠,𝑘

(Δ𝑡)2
+

𝜈𝑠

(
𝜋𝑘

𝐿𝑠

)2 𝑢(𝑛+1)
𝑠,𝑘

− 𝑢(𝑛−1)
𝑠,𝑘

2Δ𝑡
+
2𝑐1
𝜌𝑠

(
𝜋𝑘

𝐿𝑠

)2
𝑢
(𝑛)
𝑠,𝑘
+

𝜋𝑘

𝜌𝑠𝐿𝑠
𝜎
(𝑛)
NL,𝑘 + O

(
Δ𝑡2

)
= 0

(9.10)197

which upon algebraic manipulation leads to a second order temporally accurate solid198
displacement mode update199

𝑢
(𝑛+1)
𝑠,𝑘

=
1
𝜁𝑠,𝑘


(−1)𝑘Δ𝑡

(
𝑉
(𝑛+1)
𝐼

−𝑉 (𝑛−1)
𝐼

)
𝜋𝑘

+ 2𝑢(𝑛)
𝑠,𝑘

−
(
2 − 𝜁𝑠,𝑘

)
𝑢
(𝑛−1)
𝑠,𝑘

−

(Δ𝑡)2
(
2𝑐1
𝜌𝑠

(
𝜋𝑘

𝐿𝑠

)2
𝑢
(𝑛)
𝑠,𝑘
+

𝜋𝑘

𝜌𝑠𝐿𝑠
𝜎
(𝑛)
NL,𝑘

)] (9.11)200

with201

𝜁𝑠,𝑘 = 1 + 𝜈𝑠
Δ𝑡

2

(
𝜋𝑘

𝐿𝑠

)2
(9.12)202

Finally, we get a closed form for all the expressions by invoking the modal stress balance203
(Main text Eq. 3.11) at the (𝑛 + 1)th time level below. Our choice of discretization at the204
(𝑛 + 1)th step, rather than at the 𝑛th step, ensures that the updates to the solid Eq. 9.11 and205
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fluid Eq. 9.6 modes are consistent with each other.206

©­­­­­­«
𝜇 𝑓 (𝑉wall −𝑉𝐼 )

𝐿 𝑓
− 2𝑐1𝑈𝐼

𝐿𝑠
− 𝜎NL,0 −

𝜇𝑠𝑉𝐼

𝐿𝑠︸                                                 ︷︷                                                 ︸
I

ª®®®®®®¬

(𝑛+1)

+

©­­­­­­«
∞∑︁
𝑘=1

[
𝜇 𝑓 𝜋𝑘𝑣 𝑓 ,𝑘

𝐿 𝑓
− (−1)𝑘

{
2𝑐1𝜋𝑘𝑢𝑠,𝑘

𝐿𝑠
+
𝜇𝑠𝜋𝑘

𝐿𝑠

d𝑢𝑠,𝑘
d𝑡
+ 𝜎NL,𝑘

}]
︸                                                                             ︷︷                                                                             ︸

II

ª®®®®®®¬

(𝑛+1)

= 0

(9.13)207

In the above Eq. 9.13, we first describe the time discretization of the first term, denoted by208
the under-brace I. For this term, the nonlinear contribution 𝜎NL needs to be extrapolated209
forward in time to the (𝑛 + 1)th step. To achieve this, we utilize the second-order accurate210
extrapolation EXT2 (Hairer et al. 1991) scheme whose formula is shown below.211

𝜎
(𝑛+1)
NL,0 ≈ 2𝜎(𝑛)NL,0 − 𝜎

(𝑛−1)
NL,0 + O

(
Δ𝑡2

)
(9.14)212

This discretization is physically motivated by the fact that the nonlinear terms govern the213

evolution of slow non-linear elastic wave time scales ∼ O
(
𝐿𝑠

−1 (𝑐3/𝜌𝑠)0.5
)
as opposed to214

the fast diffusive time scales ∼ O
(
𝐿2𝑠/𝜈𝑠

)
in the system. Hence, we can extrapolate these215

stress waves forward in time and still capture the correct physics. Upon substituting the216
discretizations of Eqs. (9.4) and (9.14) in the term I discussed above, we arrive at217

I ≈
𝜇 𝑓

(
𝑉
(𝑛+1)
wall −𝑉 (𝑛+1)

𝐼

)
𝐿 𝑓

− 2𝑐1
𝐿𝑠

(
𝑈
(𝑛)
𝐼
+
Δ𝑡

2

(
𝑉
(𝑛+1)
𝐼

+𝑉 (𝑛)
𝐼

))
−

(2𝜎(𝑛)NL,0 − 𝜎
(𝑛−1)
NL,0 ) −

𝜇𝑠𝑉
(𝑛+1)
𝐼

𝐿𝑠
+ O

(
Δ𝑡2

) (9.15)218

Next, we discuss the time-discretization of the second term, denoted by the under-brace II219
in Eq. 9.13. The following formulae are used for discretizing the terms in this case220

(
d𝑢𝑠,𝑘
d𝑡

) (𝑛+1)
≈
3𝑢(𝑛+1)
𝑠,𝑘

− 4𝑢(𝑛)
𝑠,𝑘
+ 𝑢(𝑛−1)

𝑠,𝑘

2Δ𝑡
+ O

(
Δ𝑡2

)
221

222

𝜎
(𝑛+1)
NL,𝑘 ≈ 2𝜎(𝑛)NL,𝑘 − 𝜎

(𝑛−1)
NL,𝑘 + O

(
Δ𝑡2

)
223

where the first discretization stems from the family of backward-difference formulae224
(BDF) (Hairer et al. 1991) and the second discretization is similar to Eq. 9.14. Upon225

Rapids articles must not exceed this page length
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substituting these discretizations, the second term II now reads226

II ≈
∞∑︁
𝑘=1


𝜇 𝑓 𝜋𝑘𝑣

(𝑛+1)
𝑓 ,𝑘

𝐿 𝑓

−(−1)𝑘
{
2𝑐1𝜋𝑘𝑢(𝑛+1)𝑠,𝑘

𝐿𝑠
+
𝜇𝑠𝜋𝑘

𝐿𝑠

(
3𝑢(𝑛+1)
𝑠,𝑘

− 4𝑢(𝑛)
𝑠,𝑘
+ 𝑢(𝑛−1)

𝑠,𝑘

2Δ𝑡

)
+ 2𝜎(𝑛)NL,𝑘 − 𝜎

(𝑛−1)
NL,𝑘

}]
+ O

(
Δ𝑡2

)
(9.16)227

Now the terms at the (𝑛 + 1)th step involving 𝑣 𝑓 ,𝑘 , 𝑢𝑠,𝑘 can be directly substituted with the228
previously derived modal update expressions (Eqs. (9.6) and (9.11)). Following Eq. 9.13 we229
set I + II = 0, using their discretized versions in Eqs. (9.15) and (9.16). After standard (but230
tedious) algebraic manipulations, we finally arrive at the update equation for the interface231

velocity 𝑉 (𝑛+1)
𝐼

232

𝑉
(𝑛+1)
𝐼

=
𝐸𝐼

𝜇 𝑓

𝐿 𝑓

(
1 + 2∑𝐾−1

𝑘=1
1
𝜁 𝑓 ,𝑘

)
+
𝜇𝑠

𝐿𝑠

(
1 +
3
2

∑𝐾−1
𝑘=1

1
𝜁𝑠,𝑘

)
+
𝑐1Δ𝑡

𝐿𝑠

(
1 + 2∑𝐾−1

𝑘=1
1
𝜁𝑠,𝑘

)
(9.17)233

where234

𝐸𝐼 =
𝜇 𝑓𝑉

(𝑛+1)
wall
𝐿 𝑓

− 𝑐1

𝐿𝑠

{
2𝑈(𝑛)

𝐼
+ (Δ𝑡)𝑉 (𝑛)

𝐼

}
− 2𝜎(𝑛)NL,0 + 𝜎

(𝑛−1)
NL,0

+
𝐾−1∑︁
𝑘=1

𝜇 𝑓

𝜁 𝑓 ,𝑘𝐿 𝑓

[
𝜋𝑘(2 − 𝜁 𝑓 ,𝑘)𝑣𝑛𝑓 ,𝑘 + 2

(
𝑉
(𝑛)
𝐼
+ (−1)𝑘𝛿𝑉wall

)]
+
𝐾−1∑︁
𝑘=1

2𝑐1
𝜁𝑠,𝑘𝐿𝑠

[
𝑉
(𝑛−1)
𝐼

Δ𝑡 + (−1)𝑘𝜋𝑘
(
𝛾𝑘𝑢

(𝑛)
𝑠,𝑘
+ (2 − 𝜁𝑠,𝑘)𝑢(𝑛−1)𝑠,𝑘

)]
+
𝐾−1∑︁
𝑘=1

𝜇𝑠

𝜁𝑠,𝑘𝐿𝑠Δ𝑡

[
3
2
𝑉
(𝑛−1)
𝐼

Δ𝑡+

(−1)𝑘𝜋𝑘
({
3
2
𝛾𝑘 + 2𝜁𝑠,𝑘

}
𝑢
(𝑛)
𝑠,𝑘
+

{
3
2
(2 − 𝜁𝑠,𝑘) −

1
2
𝜁𝑠,𝑘

}
𝑢
(𝑛−1)
𝑠,𝑘

)]
+
𝐾−1∑︁
𝑘=1
(−1)𝑘

({
𝛾𝑘 + 2
𝜁𝑠,𝑘

+
3
2
𝜈𝑠(Δ𝑡)
𝜁𝑠,𝑘

(
𝜋𝑘

𝐿𝑠

)2
− 2

}
𝜎
(𝑛)
NL,𝑘 + 𝜎

(𝑛−1)
NL,𝑘

)

(9.18)235

236

𝛾𝑘 =
2𝑐1
𝜌𝑠

(
𝜋𝑘Δ𝑡

𝐿𝑠

)2
− 2 (9.19)237

Overall, the above set of equations express the physical interface velocity, modal fluid
velocities, modal solid displacements and physical interface displacement at a given time.
Recovery of physical solid displacements and fluid velocities from their modal counterparts
is achieved via Eq. 4.1. The system evolution can then be directly obtained by numerically
iterating the above equations till the desired time. For convenience, the complete solution is
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given below.

𝑉
(𝑛+1)
𝐼

= 𝐸𝐼
/ {

𝜇 𝑓

𝐿 𝑓

(
1 + 2

𝐾−1∑︁
𝑘=1

1
𝜁 𝑓 ,𝑘

)
+
𝜇𝑠

𝐿𝑠

(
1 +
3
2

𝐾−1∑︁
𝑘=1

1
𝜁𝑠,𝑘

)
+
𝑐1Δ𝑡

𝐿𝑠

(
1 + 2

𝐾−1∑︁
𝑘=1

1
𝜁𝑠,𝑘

)}

𝑢
(𝑛+1)
𝑠,𝑘

=
1
𝜁𝑠,𝑘


(−1)𝑘Δ𝑡

(
𝑉
(𝑛+1)
𝐼

−𝑉 (𝑛−1)
𝐼

)
𝜋𝑘

+ 2𝑢(𝑛)
𝑠,𝑘

−
(
2 − 𝜁𝑠,𝑘

)
𝑢
(𝑛−1)
𝑠,𝑘

−

(Δ𝑡)2
(
2𝑐1
𝜌𝑠

(
𝜋𝑘

𝐿𝑠

)2
𝑢
(𝑛)
𝑠,𝑘
+

𝜋𝑘

𝜌𝑠𝐿𝑠
𝜎
(𝑛)
NL,𝑘

)]
𝑣
(𝑛+1)
𝑓 ,𝑘

=
𝐸 𝑓 ,𝑘

𝜁 𝑓 ,𝑘
; 𝑈

(𝑛+1)
𝐼

= 𝑈(𝑛)
𝐼
+
Δ𝑡

2

(
𝑉
(𝑛+1)
𝐼

+𝑉 (𝑛)
𝐼

)
;

with

𝜁𝑠,𝑘 = 1 + 𝜈𝑠
Δ𝑡

2

(
𝜋𝑘

𝐿𝑠

)2
; 𝜁 𝑓 ,𝑘 = 1 + 𝜈 𝑓

Δ𝑡

2

(
𝜋𝑘

𝐿 𝑓

)2
;

𝛿𝑉wall = 𝑉 (𝑛+1)wall −𝑉 (𝑛)wall; 𝛾𝑘 =
2𝑐1
𝜌𝑠

(
𝜋𝑘Δ𝑡

𝐿𝑠

)2
− 2;

𝐸 𝑓 ,𝑘 =
(
2 − 𝜁 𝑓 ,𝑘

)
𝑣
(𝑛)
𝑓 ,𝑘

−
2
{
𝑉
(𝑛+1)
𝐼

−𝑉 (𝑛)
𝐼

− (−1)𝑘𝛿𝑉wall
}

𝜋𝑘

𝐸𝐼 =
𝜇 𝑓𝑉

(𝑛+1)
wall
𝐿 𝑓

− 𝑐1

𝐿𝑠

{
2𝑈(𝑛)

𝐼
+ (Δ𝑡)𝑉 (𝑛)

𝐼

}
− 2𝜎(𝑛)NL,0 + 𝜎

(𝑛−1)
NL,0

+
𝐾−1∑︁
𝑘=1

𝜇 𝑓

𝜁 𝑓 ,𝑘𝐿 𝑓

[
𝜋𝑘(2 − 𝜁 𝑓 ,𝑘)𝑣𝑛𝑓 ,𝑘 + 2

(
𝑉
(𝑛)
𝐼
+ (−1)𝑘𝛿𝑉wall

)]
+
𝐾−1∑︁
𝑘=1

2𝑐1
𝜁𝑠,𝑘𝐿𝑠

[
𝑉
(𝑛−1)
𝐼

Δ𝑡 + (−1)𝑘𝜋𝑘
(
𝛾𝑘𝑢

(𝑛)
𝑠,𝑘
+ (2 − 𝜁𝑠,𝑘)𝑢(𝑛−1)𝑠,𝑘

)]
+
𝐾−1∑︁
𝑘=1

𝜇𝑠

𝜁𝑠,𝑘𝐿𝑠Δ𝑡

[
3
2
𝑉
(𝑛−1)
𝐼

Δ𝑡+

(−1)𝑘𝜋𝑘
({
3
2
𝛾𝑘 + 2𝜁𝑠,𝑘

}
𝑢
(𝑛)
𝑠,𝑘
+

{
3
2
(2 − 𝜁𝑠,𝑘) −

1
2
𝜁𝑠,𝑘

}
𝑢
(𝑛−1)
𝑠,𝑘

)]
+
𝐾−1∑︁
𝑘=1
(−1)𝑘

({
𝛾𝑘 + 2
𝜁𝑠,𝑘

+
3
2
𝜈𝑠(Δ𝑡)
𝜁𝑠,𝑘

(
𝜋𝑘

𝐿𝑠

)2
− 2

}
𝜎
(𝑛)
NL,𝑘 + 𝜎

(𝑛−1)
NL,𝑘

)
.

10. Non-linear Kelvin–Voigt solid: Numerical least-squares fit procedure of the238
high-gain peak curves239

In the case of the non-linear Kelvin–Voigt model, by spanning a phase-space numerically, we240
discover high-gain peaks similar to the linear Kelvin–Voigt case. These peaks seem to occur241
in a regular structure, but depart from the hyperbolic structures seen in the linear Kelvin–242
Voigt case. Then, to numerically characterize the curves on which these peaks reside, we243
use a numerical fit procedure which consists of the following steps. We begin by adopting a244
peak-detection algorithm to obtain all local maxima. We then cluster each maxima into its245
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Figure 3: Clustering into sets, for further processing via the ANCOVA model (Keppel
1991)

own set, marked with a unique “set number” corresponding to the curve that the maxima lies246
on, see Fig. 3. This “set number” increases from 1 (bottom left) to 𝑛 (top right) where 𝑛 is247
the number of crests. We then fit the data using an ANCOVA model (Keppel 1991) with 𝑛248
sets, assuming the variation for a set 𝑖 to be249

𝑅𝑒 = 𝑐𝑖𝐸𝑟𝛼250

where 𝛼 is the exponent power and 𝑐𝑖 is a scaling coefficient, both to be estimated. Here the251
subscript 𝑖 in 𝑐𝑖 indicates that it is allowed to vary between sets. We then report the 𝛼 value,252
accurate up-to a significant digit.253

11. Online sandbox for interactive simulations254

The results presented in Sections 4 and 5.2 in the main text serve as a minimal platform255
for exploring flow–elastic structure interaction phenomena, thus building intuition into256
more complex problems. To aid this exploration, we open-source our computational code257
under a liberal license. Further, to enable a seamless research/educational experience and258
to disencumber scientists/students from the process of installing essential computational259
software stack, we provide an interactive sandbox built atop our code. This sandbox is free,260
open-source, hosted online and is accessible from any modern web browser running on261
personal devices from mobile phones to laptops. Our sandbox can be found here and the262
numerical code powering it is available here. We present snapshots of this sandbox in Fig. 4.263
Users can utilize simple sliders to change geometrical and dynamical parameters on the264
left, which are then used to run computations asynchronously before presenting results and265
velocity plots on the right.266
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