Movie Captions

• $Movie_{1C}YL + WAKE_TRA_d 1p12mm.avi$

Illustration of the wake pattern and of the cylinder behaviour in a TRA regime with d = 1.12mm, $Ar \simeq 47$, $Re \simeq 49$, $Ca \sim 2.6$, and $L/d \simeq 35$. Wake is depicted by instantaneous iso-surfaces of the λ_2 criterion ($\lambda_2 d^2/U^2 = -0.0004$) colored by iso-contours of the x-vorticity ($\omega_x d/U \in [-0.1, 0.1]$; blue to red).

• $Movie_{2C}YL + WAKE_TRA_d 1p9mm.avi$

Illustration of the wake pattern and of the cylinder behaviour in a TRA regime with d = 1.9mm, $Ar \simeq 103$, $Re \simeq 124$, $Ca\mathcal{O}(10^{-2})$, and $L/d \simeq 10$. Wake is depicted by instantaneous iso-surfaces of the λ_2 criterion ($\lambda_2 d^2/U^2 = -0.005$) colored by iso-contours of the x-vorticity ($\omega_x d/U \in [-0.15, 0.15]$; blue to red).

• Movie_{3C}YL + WAKE_AZI_d2p55mm.avi Illustration of the wake pattern and of the cylinder behaviour for an AZI regime with d = 2.55mm, $Ar \simeq 161$, $Re \simeq 217$, $Ca\mathcal{O}(10^{-4})$, and $L/d \simeq 20$. Wake is depicted by instantaneous iso-surfaces of the λ_2 criterion ($\lambda_2 d^2/U^2 = -0.01$) colored by iso-contours of the x-vorticity ($\omega_x d/U \in [-0.2, 0.2]$; blue to red.)

• $Movie_{4C}YL_M1_d1p09mm.avi$

Bending oscillations of the cylinder during its fall for M₁ regime.

• $Movie_{5C}YL + WAKE_M 1_d 1p09mm.mp4$

Illustration of the wake pattern and of the cylinder behaviour for a M₁ regime with d = 1.09mm, $Ar \simeq 45$, $Re \simeq 42$, $Ca \simeq 36$, and $L/d \simeq 68$. Wake is depicted by instantaneous iso-surfaces of the λ_2 criterion ($\lambda_2 d^2/U^2 = -0.0004$) colored by iso-contours of the x-vorticity ($\omega_x d/U \in [-0.1, 0.1]$; blue to red).

• $Movie_{6C}YL + WAKE_M2_d 1p02mm.mp4$

Illustration of the wake pattern and of the cylinder behaviour for a M₂ regime with d = 1.02mm, $Ar \simeq 40$, $Re \simeq 37$, $Ca \simeq 210$, and $L/d \simeq 107$. Wake is depicted by instantaneous iso-surfaces of the λ_2 criterion ($\lambda_2 d^2/U^2 = -0.0004$) colored by iso-contours of the x-vorticity ($\omega_x d/U \in [-0.1, 0.1]$; blue to red).