Movie 1

Simulation of a cavitation bubble ($R_{max}\approx 500~\mu m$) oscillating far from any boundaries with passive particles; the left side shows the bubble gas in red and water in blue, the right side shows the velocity field

Movie 2

Simulation of a cavitation bubble ($R_{max} \approx 500 \ \mu m$) at d = 500 μm to a rigid wall; the left side shows the bubble gas in red and water in blue, the right side shows the velocity field

Movie 3

Simulation of a cavitation bubble ($R_{max} \approx 475 \ \mu m$) at d = 500 μm from a rigid perforated plate of thickness I = 1 mm and hole radius $r_c = 50 \ \mu m$ with passive particles; the left side shows the bubble gas in red and water in blue, the right side shows the velocity field

Movie 4

Simulation of a cavitation bubble ($R_{max} \approx 475 \ \mu m$) at d = 500 μm from a rigid perforated plate of thickness l = 1 mm and hole radius $r_c = 25 \ \mu m$ with passive particles; the left side shows the bubble gas in red and water in blue, the right side shows the velocity field

Movie 5

Simulation of a cavitation bubble ($R_{max} \approx 475 \ \mu m$) at d = 500 μm from a rigid perforated plate of thickness l = 1 mm and hole radius r_c = 200 μm with passive particles; the left side shows the bubble gas in red and water in blue, the right side shows the velocity field

Movie 6

Simulation of a cavitation bubble ($R_{max} \approx 475 \ \mu m$) at d = 250 μm from a rigid perforated plate of thickness l = 1 mm and hole radius $r_c = 50 \ \mu m$ with passive particles; the left side shows the bubble gas in red and water in blue, the right side shows the velocity field

Movie 7

Simulation of a cavitation bubble ($R_{max} \approx 475 \ \mu m$) at d = 100 μm from a rigid wall with a channel (l = 1 mm, r_c = 50 μm) with passive particles; the left side shows the bubble gas in red and water in blue, the right side shows the velocity field

Movie 8

Simulation of a cavitation bubble ($R_{max} \approx 475 \ \mu m$) at d = 0 from a rigid perforated plate of thickness l = 1 mm and hole radius $r_c = 50 \ \mu m$ with passive particles; the left side shows the bubble gas in red and water in blue, the right side shows the velocity field

Movie 9

Simulation of a cavitation bubble ($R_{max} \approx 460 \ \mu m$) at d = 108 μm from a rigid perforated plate of thickness l = 170 μm and hole radius $r_c = 97.5 \ \mu m$; bubble gas is shown in orange, an ink map shows the liquid in the upper tank in black, and transitions over red and yellow to grey for the liquid in the lower tank; followed by an high-speed movie of the corresponding experimental case using Schlieren imaging

Movie 10

Simulation of a cavitation bubble ($R_{max} \approx 460 \ \mu m$) at d = 202 μm from a rigid perforated plate of thickness l = 170 μm and hole radius r_c = 97.5 μm ; bubble gas is shown in orange, an ink map shows the liquid in the upper tank in black, and transitions over red and yellow to grey for the liquid in the lower tank; followed by an high-speed movie of the corresponding experimental case using Schlieren imaging