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Figure S1. (a)The computational domain. (b)The grid independence test. (c-d)Diagram of
the local refinement mesh.
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Figure S2. Comparison of the initial contact radius (L0) from numerical, theoretical and
experimental results at different velocities, U without electric field.

1. Experimental setup and numerical model

The grid independence test is conducted by comparing the spreading speed of the
transient solutions to the max spread radius for different grid resolutions. The drop radius
is 1.25mm, and We = 34.3. Five different grid sizes are employed, namely, a/△ x = 25,
a/△ x = 62.5, a/△ x = 100, a/△ x = 125, and a/△ x = 150, where △x represents the
grid spacing in the computational region (figure S1a), and the evolution of the spreading
radius with time is plotted in figure S1(b). The difference between the four finer grids
is quite small. Here, a grid size of a/ △ x = 62.5 is used to reduce the computational
effort, but local encryption is performed at the location of contact with the substrate
to capture the evolution of the bottom air film in figure S1(c-b), where a/△ x = 4000
(△x = 0.2 µm).
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FIGURE 8 Comparison of parameters on the contour of the droplet in the three contact
states before the droplet contacts the substrate. (a) Local contour of droplet bottom.
Distribution of polarized charge density (b) and electric field intensity (c) on the contour. Time
interval is 20μs.
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Figure S3. Comparison of the charge density (ρe) and the electric field strength EB of the
profile on the drop bottom surface in representative contact states before the touchdown. (a)
Annular contact mode at ΓE = 0.17. (b) Multiple contact mode at ΓE = 0.26. (c) Centre contact
mode at ΓE = 0.34. The time interval is 20 µs.

In figure S2, the comparison of the initial contact radius (L0) from numerical, theo-
retical and experimental results at different velocities without electric field shows good
agreement and the initial contact radius reduces with the increase of We.

2. Experimental and numerical results

Figure S3 shows the specific data of ρe and E of the profile of the drop bottom in
the three contact modes. With ΓE = 0.17, the charge density near the contact line
increases when the bottom of the drop deforms into a dimple. This is owing to the larger
curvature at the edge of the air disc, which results in a large electric field there (Figure
S3a). With ΓE = 0.26, the bottom of the drop sharpens up before h = 20 µm. Therefore,
the polarized charges accumulate at the lowest of the bottom surface and dramatically
increase the electric field (figure S3b). With ΓE = 0.34, the charge density at the contact
centre is higher and results in a larger electric field (figure S3c).
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底部电场力理论推导
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Figure S4. (a)Schematic representation of ρe distribution in polar coordinates. (b) Schematic
diagram of the mirror charge model of the charge dipole simplified by the drop in the electric
field when it is close to the grounded substrate.

3. Scaling law of critical electric field

3.1. The amount of polarized charge (Q) on the drop surface

The surface charge induced by the electric field reconstructs the space electric field
simultaneously, due to the strong coupling between the charge and the electric field.
Taylor & G. (1966) gave an analytical solution to the electric field of a suspended drop
in an electric field, as shown in figure S4(a). The spatial potential Φ in polar coordinates
(r, θ) is

Φ1 =
3r

2 +R
E∞ cos θ, (3.1)

Φ0 = (r +
1−R

2 +R

a3

r2
)E∞ cos θ, (3.2)

where R = σ1/σ0 is the electrical conductivity ratio. The electric field along the radius
direction (r) is

E1r = −∂Φ1

∂r
= − 3

2 +R
E∞ cos θ, (3.3)

E1θ = − ∂Φ1

r∂θ,
=

3

2 +R
E∞sinθ, (3.4)

E0r = −∂Φ0

∂r
= −

[
1 +

2(R− 1)

2 +R

a3

r3

]
E∞ cos θ, (3.5)

E0θ = −∂Φ0

r∂θ
=

[
1− R− 1

2 +R

a3

r3

]
E∞ sin θ. (3.6)

The electric field strength at the drop surface parallel (EP , θ = 0°) and vertical to (EV ,
θ = 90°) the direction of the electric field (E∞) are plotted in figure S5(a), with the
parameters (R = 2.5,and a = 1 mm) (Lopez-Herrera et al. 2011). It confirms that the
electric field in the simulation is consistent with the Taylor’s analytical solution.
Based on the Gauss’s theorem (ρe = −εE r), the spatial distribution of charge density
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Figure S5. (a) Comparison of the simulated and theoretical results for the change of the electric
field at the drop surface parallel (EP , θ = 0°) and vertical to (EV , θ = 90°) the direction of
the electric field. The electric fields are dimensionless with E/E0 and r/a. (b) The amount of
the polarization charge with different electric field strengths. (c) The amount of the polarization
charge with different radii of the drop. (d) The amount of the polarization charge with varying
conductivity and dielectric value of the drop.

(ρe) is

ρe = −ε0

(
1 +

2 (R− 1) a3

(2 +R) r3

)
E∞ cos (θ) . (3.7)

The amount of the electric polarization charge (Q) can be obtained by integrating the
ρe on the top or bottom hemispherical surface:

Q = 2 π

∫ π
2

0

ρer
2 sin (θ) dθ = −

πε0
(
2a3R+ r3R− 2a3 + 2r3

)
r (2 +R)

E∞. (3.8)

Considering the charge only exists at the interface of the drop (r = a), the charge
amount (Q) at the hemispherical surface is

Q = −3πε0a
2R

2 +R
E∞, (3.9)

in which R ≈ 5.5× 1042, so the charge quantity Q can be simplified as

Q = −3πε0a
2E∞, (3.10)

where the negative sign (”−”) means that the electrical properties of the polarized charge
(Q) is opposite to E∞. The polarized charge obtained numerically (QSimulation) agree
with the theory (QTheory) very well, as shown in figure S5(b-d), qualitatively supporting
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the notion that the surface polarized charge of the drop is unchanged when the drop
approaches the substrate.

3.2. Mirror charge model of the charge dipole

The separation of polarized surface charge allows us to treat the drop as a charge
dipole. We further use the mirror charge model of this dipole to quantify explain the
rapid growth of the EB and f esB at the bottom of the drop. As shown in figure S4
(b), we assume: i) The deformation of the drop is small and the drop can be treated as
a sphere for the purpose of mirror charge quantification; ii) The charge is distributed
equally on the top and bottom of the drop hemisphere; iii) The internal electric field
of the drop is negligible; iv) The substrate is a conductive plane of zero potential. The
axial symmetry suggests that the electric field of the non-uniformly distributed induced
charges is equivalent to that generated by point charges that located on the central axis
of the drop. We assume the distance from the centre of the drop (point O) to the point
charge is s. Here H is the distance between O and the substrate (point G). According to
the method of mirror charge (Papadopoulos 1963), there is a point charge with opposite
charges at a symmetrical position on the lower side of the grounded conductive substrate.
The space electric field formed by the surface charge can be replaced by four equivalent
point charges. First, the potential at point A on the upper of the drop is

ΦA =
1

4πε0

(
−Q

a− s
+

Q

a+ s
+

−Q
′

2H + a− s
+

Q
′

2H + a+ s

)
. (3.11)

The electric potential at point B at the lower part of the drop is

ΦB =
1

4πε0

(
−Q

a+ s
+

Q

a− s
+

−Q
′

2H − a− s
+

Q
′

2H − a+ s

)
. (3.12)

Because the electric field intensity inside the drop is approximately 0:

E1 = − 3

2 +R
≈ 0. (3.13)

It can be considered that:

ΦA = ΦB . (3.14)

According to the mirror charge model, it is first assumed that the induced mirror charge
Q′ = Q. Combining the above equations, the location of charge centre (s) can be
expressed as:

s =

√
a2 − 2aH + 4H2 − 2

√
5a2H2 − 4rH3. (3.15)

The distance between the drop and the substrate is δ = H − a. Substituting that into
equation (3.15), the location of charge centre (s) is

s =

√
a2 − 2 a H + 4 H2 − 2

√
5a2(a+ δ)

2 − 4r(a+ δ)
3
. (3.16)

Expanding and simplifying the above equation yields:

s =
√

−a2 − 2aδ − 2aH+ 4H2. (3.17)

Equation (3.17) that s approaches a with the decrease of δ, which means the charge on
the surface of the drop is concentrated at point B when the drop contacts the substrate.
The electric potential ΦD for any point M between the bottom of the drop (B) and the
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substrate (G) is

ΦM =
Q

4πε0

(
−1

m+ a
+

1

m− a
+

−1

2H −m− a
+

1

2H −m+ a

)
. (3.18)

The electric field at any point M is

ΦM
′(m) =

Q

4πε0

(
1

(m+ s)
2 +

−1

(m− s)
2 +

−1

(2H −m− s)
2 +

1

(2H −m+ s)
2

)
. (3.19)

The electric field at point B (m = a) is

EB =
Q

4πε0

(
1

(a+ s)
2 − 1

(a− s)
2 − 1

(2H − a− s)
2 +

1

(2H − a+ s)
2

)
. (3.20)

Substituting H = δ + a into the above equation:

EB =
Q

4πε0

(
−
8s (a+ δ)

(
a4 + 4a3δ − 2a2s2 + 8a2δ2 − 4aδs2 + 8rδ3 + s4

)
(a+ s)

2
(a− s)

2
(a+ 2δ − s)

2
(a+ 2δ + s)

2

)
. (3.21)

Expanding and omitting the second order minima yields

EB =
Q

4πε0

(
−8a5s− 40a4sδ + 16 a3s3 + 48 a2s3δ − 8 a s5 − 8s5δ

a8 − 4a6s2 + 6 a4s4 − 4 a2s6 + s8

)
, (3.22)

which can be simplified as

EB =
Q

4πε0

(
−
8
(
(−a− δ) s2 + r2 (a+ 5δ)

)
s

(a− s)
3
(a+ s)

3

)
. (3.23)

After substituting (3.17)

EB =
Q

4πε0

(
− (2a+ δ) (a+ 2h)

2δ(a+ δ)
3

)
. (3.24)

By omitting the first-order fractional quantities for simplification and substituting (3.10),
the electric field at the bottom of the drop can be obtained as

EB =
Q

4πε0

(
−1

aδ

)
=

3a

4δ
E∞. (3.25)

Equation (3.25) suggests that the EB at the bottom of the drop increases sharply as δ
decreases. The characteristic electric field stress f esB is

f esB =
1

2
ε0EB

2 =
9ε0a

2

32δ2
E2

∞. (3.26)

Therefore, the scaling laws of EB and f esB versus δ are

EB ∼ a

δ
E∞; f esB ∼ ε0a

2

δ2
E2

∞. (3.27)

The numerical results of EB and f esB with different δ are shown in figure S6. EB and
f esB increase exponentially when δ < 1mm. When ΓE < 0.26, the annular contact with
reduced air disc appears. The charge accumulates in the ring around the air disc and
fails to concentrate to one point, resulting in slopes smooth than -1 (for EB) and -2 (for
f esB) in the logarithm scale in figure S6 respectively. When 0.26 < ΓE < 0.68, the point
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Figure S6. The EB ∼ c1/δ and fesB ∼ c2/δ
2 formula is used to fit the EB (a) and f esB (b)

data at the lowest point of the drop extracted from the simulation.

contact states occur, and the charge can accumulate at the bottom apex of the drop. In
this range of electric feild, the slopes are approximately -1 (for EB) and -2 (for f esB)
in the logarithm scale in figure S6. When ΓE > 0.68, the ellipsoid deformation of the
drop is significant, which deviates further from the spherical drop assumption, resulting
in slopes steeper than -1 (for EB) and -2 (for f esB) in the logarithm scale in figure S6.

3.3. Calculation of the Lubrication pressure pg

Klaseboer et al. (2014) shown that for the charge neutral drop impact, the profile of
the drop bottom surface is governed by the balance between drop inertia and lubrication
pressure. While exposed in an electric field, the additional electric stress may become
comparable to the lubrication pressure. The gas film is mainly affected by the combined
effects of gravity, Laplace pressure (plaplace = 2γ/a), the lubrication pressure (pg) and
the electric stress (f esB). Here gravity and surface tension are relatively small and can
be neglected.
The airflow is assumed to be incompressible because pg is much smaller than the

ambient pressure (P0 = 105Pa) in this study, which also can be reflected by the

compressibility factor ϵ ≡ P0/
(
aµ−1

0 U 7ρ41
)1/3

is bigger than 1/3 (Mandre et al. 2009; Li
& Thoroddsen 2015). When a drop impacts a flat and smooth surface without electric
field, the air film between the drop and the substrate can be regarded as a lubricating
film with a uniform thickness. The lubrication pressure distribution at the bottom of
the drop can be obtained by the lubrication approximation of the Reynolds equation in
axisymmetric form Chan et al. (2011):

∂

∂x

(
ρ0h

3

12µ0

∂p

∂x

)
+

∂

∂y

(
ρ0h

3

12µ0

∂p

∂y

)
=

∂ (ρ0h)

∂t
, (3.28)

where h is the distance from the substrate to the sphere (that is thickness of air film), ρ0
is the density of air, µ0 is the dynamic viscosity of air and p is the air pressure (that is
lubrication pressure). The last term in the (3.28) represents the time dependent portion
of the Reynolds equation.
It is reasonable to assume the gas is incompressible in this experimental conditions.

Hence, the ρ0 does not change. Meanwhile, the whole model is axisymmetric, the second
term on the left of (3.28) can be ignored. The lubrication pressure distribution at the
bottom of the drop can be obtained by lubrication approximation of the Reynolds
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equation in axisymmetric form (Chan et al. 2011):

1

r

∂

∂r

(
h3

12µ0
r
∂p

∂r

)
=

∂ (h)

∂t
. (3.29)

Integrating r on both sides of the equal sign simultaneously:

h3

12µ0
r
∂p

∂r
=

∂h

2∂t
r2, (3.30)

Further the above equation can be expressed as

∂p

∂r
=

6µ0 r

h3

∂h

∂t
. (3.31)

After substituting U = −∂h (r, t)/∂t into it, we obtain

∂p

∂r
= −6µ0 r

h3
U . (3.32)

By changing the differential elementary, the above equation can be expressed as

∂p

∂r2
= −3µ0

h3
U . (3.33)

Here h is a function of r:

h = δ + a−
√
a2 − r2, (0 ⩽ r ⩽ a). (3.34)

The above equation can be found as

r2 = −2δa+ 2ha− δ2 + 2hδ − h2. (3.35)

The above equations are differentiated for h:

∂r2

∂h
= 2a+ 2δ − 2h. (3.36)

Solving equations (3.33), (3.36) jointly, we can obtain

pg =
∂p

∂r2
∂r2

∂h
= −6µ0(

a+ δ

h3
− 1

h2
)U (3.37)

Integrating the above equations on h:

pg = −6µ0(−
a+ δ

2h2 +
1

h
)U + C, (3.38)

where C is the constant pressure in the continuous phase (p0) in r ⩾ a. Substitute
equation (3.34) into the above equation

pg = −3µ0
δ + a− 2

√
a2 − r2(

δ + a−
√
a2 − r2

)2U + C. (3.39)

Here the atmospheric pressure is used as the reference zero point, p(r=a) = 0 Pa, resulting
in that C can be solved as C = 3µ0U /a. The lubrication pressure can be further
expressed as

pg = −3µ0
δ + a− 2

√
a2 − r2(

δ + a−
√
a2 − r2

)2U +
3µ0

a
U . (3.40)

At the position of the drop vertical axis (r = 0), the lubrication pressure (pg) can be
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Figure S7. (a)The distribution of lubrication pressure (pg) along the radius r. (b) The
distribution of lubrication pressure (pg) along the distance δ.

simplified as

pg =
3µ0a

δ2
U . (3.41)

Here the radius of the drop is a = 1.25 mm and the impact velocity is U = 1 m/s. In
this case, the Laplace pressure of the drop is pLaplace = 2γ/a = 116.32 Pa. Figure S7
shows the distribution of lubrication pressure (pg) when the drop is close to the substrate.
As the drop approaches the substrate, the lubrication pressure begins to increase and
exceeds the surface tension within a certain range, causing the bottom of the drop to
deform into a dimple. The highest pressure point is always generated at the symmetry axis
and decays rapidly along the radius direction, which is the key factor of the initial contact
diameter. The lubrication pressure becomes negligible beyond the radius of 250 microns,
as shown in figure S7(a). The lubrication pressure increases sharply when δ < 25 µm, as
shown in figure S7(b).
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