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1. DSMC method. Some technical details

As described in section 1, we treat in this paper the molecular gas as a thermostat in
the sense that its state is not perturbed by the presence of grains. Therefore, the collision
stage in the DSMC method must be slightly modified to accurately reproduce Eq. (3.1).
We follow similar steps as proposed by Montanero & Garzó (2002) to numerically solve
the Boltzmann–Enskog equation of a homogeneous granular mixture.

The simulation is initiated by drawing the particle velocities from a Maxwellian
distribution at temperature Tg following the Box–Muller transform (Box & Muller 1958).
Since the granular gas is assumed to be spatially homogeneous, only the collision stage
is described here. The procedure can be summarised as follows:

(i) A required number of Nδt
j candidate pairs to collide in a time δt is selected. This

number is given by† (Montanero & Garzó 2002)

Nδt
j = j

2d−3dΓ
(
d
2

)
π

d
2−1

(σ + σj)
2

σd
Njϕg

max
j δt, (1.1)

where j = 1 (j = 2) refers to a granular (molecular) particle. Namely, Nδt
1 refers to

granular-granular collisions, while Nδt
2 refers to granular-molecular collisions. Here, Nj

is the total number of particles of species j and gmax
j is an upper bound of the average

relative velocity. A good estimate is gmax
j = Cvthj , where vthj =

√
2Tg/m is the mean

thermal velocity, m = (m +mj)/2, and C is a constant, e.g., C = 5 (Bird 1994). Note
that in Eq. (1.1) collisions among molecular particles themselves have been neglected.
(ii) A colliding direction σ̂j is randomly selected with equiprobability.
(iii) The collision is accepted if

|σ̂j · g12| = |σ̂j · (v1 − v2)| > U(0, 1)gmax
j , (1.2)

where U(0, 1) is a random number uniformly distributed in [0, 1].
(iv) If the collision is accepted, only the velocities of the granular particles are updated

according to the relationships (2.4) (for j = 1) and (2.6) (for j = 2) of the main text.
The above procedure constitutes an intermediate method between Bird’s (Bird 1994)

and Nanbu’s (Nanbu 1986) schemes since in the latter only one of the colliding particles
changes its velocity. However, as pointed out by Montanero & Santos (1997), both

† In contrast to the work of Montanero & Garzó (2002), we consider here a very dilute system
and so, the pair correlation functions are set equal to 1.
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schemes are equivalent and equally useful to solve the Boltzmann equation since in both
techniques momentum is conserved on average. Thus, we do not need to account for
collisions among molecular particles themselves because n/ng ≪ 1 and the computational
cost would be very expensive.
Moreover, in the theory all the mechanical information of the molecular gas (with

the exception the mass ratio m/mg) is enclosed in the (reduced) drift coefficient γ∗

throughout the reduced (bath) temperature T ∗
g . Let us denote by Ng and N the total

number of granular and molecular particles, respectively. Since N/Ng = n/ng, then σ
and σg are related by

σg =

( √
π

4
√
2

N

Ng

√
m

mg

1

ϕ
√
T ∗
g

)1/(d−1)

− 1

σ. (1.3)

While deriving Eq. (1.3) use has been made of the relationships

n =
2d−1dΓ

(
d
2

)
πd/2

σ−dϕ, ng =
dΓ
(
d
2

)
4π(d−1)/2

(
m

mg

)1/2(
m

2Tg

)1/2

σ1−dγ. (1.4)

Equation (1.3) establishes a constraint in the inputs regarding the molecular gas. For
this reason, once the inputs appearing in the theory (d,m/mg, T

∗
g , ϕ) are fixed, then we

choose Ng in such a way that Ng/N ≫ 1 and σg/σ > 0.
To carry on the simulations corresponding to the effective suspension model employed

by Gómez González & Garzó (2019), the influence of the external fluid on grains is taken
into account by updating the velocity of every single grain at each time step δt according
to (Khalil & Garzó 2014; Gómez González et al. 2021):

v → e−γδtv +

(
6γTgδt

m

)1/2

U[−1, 1]. (1.5)

Here, U is an uniformly distributed random vector in [−1, 1]3. Equation (1.5) converges
to the Fokker–Planck operator [Eq. (2.14) of the main text] when a time step δt much
smaller than the mean free time between collisions is considered (Khalil & Garzó 2014).

2. Zeroth- and first-order distribution functions

To zeroth-order in the expansion, the distribution f (0) verifies the kinetic equation

∂
(0)
t f (0) = J [f (0), f (0)] + Jg[f

(0), f (0)
g ]. (2.1)

The conservation laws at this order give

∂
(0)
t n = 0, ∂

(0)
t U = 0, ∂

(0)
t T = −T

(
ζ(0) + ζ(0)g

)
. (2.2)

Upon obtaining the second relation in Eq. (2.2), we have accounted for that the dis-

tributions f (0) and f
(0)
g are isotropic in V and so, the zeroth-order contribution to the

production of momentum vanishes (F (0)[f (0)] = 0).

Since the zeroth-order distribution f (0) qualifies as a normal solution, then ∂
(0)
t f (0) =

(∂T f
(0))(∂

(0)
t T ), and Eq. (2.1) can be rewritten as

−
(
ζ(0) + ζ(0)g

)
T
∂f (0)

∂T
= J [f (0), f (0)] + Jg[f

(0), f (0)
g ]. (2.3)
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Equation (2.3) has the same form as the time-dependent homogeneous Boltzmann equa-
tion, except that f (0)(r,v; t) is the local version of the above distribution. Dimensional
analysis requires that f (0) has the scaled form

f (0)(r,v; t) = n(r; t)vth(r; t)
−dφ (c, T/Tg) , (2.4)

where c = V/vth, vth(r; t) =
√
2T (r; t)/m being the local thermal velocity. As expected,

in contrast to the so-called homogeneous cooling state for (dry) granular gases (van Noije
& Ernst 1998; Garzó 2019), the time dependence of the scaled distribution φ does not
only occur through the scaled velocity c but also through the temperature ratio T/Tg.
As mentioned before, since f (0) is isotropic in V, the heat flux vanishes (q(0) = 0) and

the pressure tensor P
(0)
ij = pδij , where p = nT is the hydrostatic pressure.

To first order in the spatial gradients, the Boltzmann kinetic equation for f (1)(r,v; t)
is

∂
(0)
t f (1) +Lf (1) − Jg[f

(1), f (0)
g ] = −

(
D

(1)
t +V · ∇

)
f (0) − mg

Tg
∆U · Jg[f (0),Vf (0)

g ], (2.5)

where D
(1)
t ≡ ∂

(1)
t +U · ∇ and

LX = −
(
J [f (0), X] + J [X, f (0)]

)
(2.6)

is the linearised Boltzmann collision operator. To first order, the macroscopic balance
equations read

D
(1)
t n = −n∇ ·U, D

(1)
t T = − 2p

dn
∇ ·U− T

(
ζ(1) + ζ(1)g

)
, (2.7)

D
(1)
t U = −ρ−1∇p− ξ∆U+ ρ−1K[f (1)], (2.8)

where ζ(1) and ζ
(1)
g are the first-order contributions to the production rates, the operator

K[X] is

Ki[X] =

∫
dv mViJg[X, f (0)

g ], (2.9)

and

ξ =
1

d

mg

Tg

∫
dvmV · Jg[f (0),Vf (0)

g ]. (2.10)

The production rates are defined in terms of the distribution f (1) and their explicit forms
are given by Eqs. (2.27)–(2.29).
The use of the balance equations (2.7) and (2.8) allows one to compute the first term

on the right side of Eq. (2.5). The result is

−
(
D

(1)
t +V · ∇

)
f (0) = A · ∇ lnT +B · ∇ lnn+ Cij

1

2

(
∂iUj + ∂jUi −

2

d
δij∇ ·U

)
+D∇ ·U+E ·∆U+ ρ−1 ∂f

(0)

∂V
·K[f (1)]

+T
(
ζ(1) + ζ(1)g

) ∂f (0)

∂T
, (2.11)

where ∂i ≡ ∂/∂ri and the quantities A, B, Cij , D, and E are given by

A(V) = −VT
∂f (0)

∂T
− p

ρ

∂f (0)

∂V
, (2.12)
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B(V) = −Vn
∂f (0)

∂n
− p

ρ

∂f (0)

∂V
, (2.13)

Cij(V) = Vi
∂f (0)

∂Vj
, (2.14)

D(V) =
1

d

∂

∂V
·
(
Vf (0)

)
+

2

d
T
∂f (0)

∂T
− f (0) + n

∂f (0)

∂n
, (2.15)

E(V) = −ρ−1 ∂f
(0)

∂V
ξ. (2.16)

Substitution of Eq. (2.11) into Eq. (2.5) yields

∂
(0)
t f (1) − T

(
ζ(1) + ζ(1)g

) ∂f (0)

∂T
+ Lf (1) − Jg[f

(1), f (0)
g ]− ρ−1 ∂f

(0)

∂V
·K[f (1)]

= A · ∇ lnT +B · ∇ lnn+ Cij
1

2

(
∂iUj + ∂jUi −

2

d
δij∇ ·U

)
+D∇ ·U+E′ ·∆U,

(2.17)

where

E′(V) = E− mg

Tg
Jg[f

(0),Vf (0)
g ]. (2.18)

The solution of Eq. (2.17) is of the form

f (1)(V) = A(V) · ∇ lnT +B(V) · ∇ lnn+ Cij
1

2

(
∂iUj + ∂jUi −

2

d
δij∇ ·U

)
+D(V)∇ ·U+ E(V) ·∆U. (2.19)

As mentioned in the main text, the presence of the term proportional to the velocity
difference ∆U in the distribution f (1) is also common in driven granular mixtures (Khalil
& Garzó 2013; Gómez González et al. 2020). Since the gradients of the hydrodynamic
fields and the term ∆U are assumed to be independent, substitution of the expression
(2.19) into Eq. (2.17) yields the following set of coupled linear integral equations:

−
(
ζ(0) + ζ(0)g

)
T∂TAi −

1

2

[
ζ(0) + ζ(0)g

(
1 + 2χ

∂ ln ζ∗g
∂χ

)]
Ai + LAi − ρ−1 ∂f

(0)

∂Vj
Kj [Ai]

−Jg[Ai, f
(0)
g ] = Ai, (2.20)

−
(
ζ(0) + ζ(0)g

)
T∂TBi + LBi − Jg[Bi, f

(0)
g ]− ρ−1 ∂f

(0)

∂Vj
Kj [Bi] = Bi +

[
ζ(0) + ζ(0)g

×

(
1− ε

∂ ln ζ∗g
∂ε

)]
Ai, (2.21)

−
(
ζ(0) + ζ(0)g

)
T∂TCij + LCij − ρ−1 ∂f

(0)

∂Vℓ
Kℓ[Cij ]− Jg[Cij , f (0)

g ] = Cij , (2.22)

−
(
ζ(0) + ζ(0)g

)
T∂TD + LD − (ζU + ζUg)T

∂f (0)

∂T
− ρ−1 ∂f

(0)

∂Vi
Ki[D]− Jg[D, f (0)

g ] = D,

(2.23)

−
(
ζ(0) + ζ(0)g

)
T∂TEi + LEi − ρ−1 ∂f

(0)

∂Vj
Kj [Ei]− Jg[Ei, f (0)

g ] = E′
i. (2.24)
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While obtaining Eqs. (2.20)–(2.24), we have accounted for the results

∂
(0)
t {A,B, Cij ,D,E} = −

(
ζ(0) + ζ(0)g

)
T∂T {A,B, Cij ,D,E} , (2.25)

and

∂
(0)
t ∇ lnT = ∇∂

(0)
t lnT = −∇

(
ζ(0) + ζ(0)g

)
= −

[
ζ(0) + ζ(0)g

(
1− ε

∂ ln ζ∗g
∂ε

)]
∇ lnn

−1

2

[
ζ(0) + ζ(0)g

(
1 + 2χ

∂ ln ζ∗g
∂χ

)]
∇ lnT. (2.26)

In Eq. (2.23), we have taken into account that since the production rates ζ and ζg are

scalar quantities, then their first-order corrections in spatial gradients ζ(1) and ζ
(1)
g must

be proportional to ∇·U since ∇n, ∇T , and ∆U are vectors and the tensor ∂iUj+∂jUi−
2
dδij∇ ·U is traceless. Thus,

ζ(1) = ζU∇ ·U, ζ(1)g = ζUg∇ ·U, (2.27)

where (Garzó 2019)

ζU =
π(d−1)/2

2dΓ
(

d+3
2

) (1− α2)
mσd−1

nT

∫
dv1

∫
dv2f

(0)(V1)D(V1)g
3
12, (2.28)

ζUg = − m

dnT

∫
dv V 2 Jg[D, f (0)

g ]. (2.29)

The necessary conditions for the solution to the integral equations (2.20)–(2.24) to
exist [Fredholm alternative (Margeneau & Murphy 1956)] is that∫

dv
{
1,v,

m

2
V 2
}
f (1)(V) = {0,0, 0} . (2.30)

The conditions (2.30) on the first-order distribution f (1)(V) are used later to establish
the existence of a unique solution of Eqs. (2.20)–(2.24). The fulfilment of conditions
(2.30) necessarily requires that the right sides of the integral equations (2.20)–(2.24) are
orthogonal to the set

{
1,V, m

2 V
2
}
, namely,

∫
dv

{
1,V,

m

2
V 2
}


A(V)
B(V)
Cij(V)
D(V)
E′(V)

 =


0
0
0
0
0

 . (2.31)

It is straightforward to prove fulfilment of the conditions (2.31) by direct integration
using the definitions (2.12)–(2.16) of A, B, Cij , D, and E′, respectively.

In steady-state conditions, the constraint ζ(0) + ζ
(0)
g = 0 applies locally and so, the

first term of the left-hand side of Eqs. (2.20)–(2.24) vanish. This yields the set of integral
equations

−χ
∂ ln ζ∗g
∂χ

Ai + LAi − ρ−1 ∂f
(0)

∂Vj
Kj [Ai]− Jg[Ai, f

(0)
g ] = Ai, (2.32)

LBi − Jg[Bi, f
(0)
g ]− ρ−1 ∂f

(0)

∂Vj
Kj [Bi] = Bi − ε

∂ ln ζ∗g
∂ε

Ai, (2.33)
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LCij − ρ−1 ∂f
(0)

∂Vℓ
Kℓ[Cij ]− Jg[Cij , f (0)

g ] = Cij , (2.34)

LD − (ζU + ζUg)T
∂f (0)

∂T
− ρ−1 ∂f

(0)

∂Vi
Ki[D]− Jg[D, f (0)

g ] = D, (2.35)

LEi − ρ−1 ∂f
(0)

∂Vj
Kj [Ei]− Jg[Ei, f (0)

g ] = E′
i. (2.36)

Here, all the quantities appearing in Eqs. (2.32)–(2.36) are evaluated in the steady state.

3. Leading Sonine approximations to the Navier–Stokes–Fourier
transport coefficients

This section addresses the approximations made to achieve the expressions of the
Navier–Stokes–Fourier transport coefficients. First, regarding the explicit form of f (0),
the results obtained in section 3 have shown that the magnitude of the cumulant a2
is in general very small. Therefore, f (0)(V) can be well represented by the Maxwellian
distribution, namely,

f (0)(V) → n
( m

2πT

)d/2
exp

(
− mV 2

2T

)
. (3.1)

The use of the Maxwellian distribution (3.1) allows us to get simple but accurate
expressions for the Navier–Stokes–Fourier transport coefficients. With the Maxwellian
approximation (3.1), the collision integral (2.10) can be easily obtained from the results
derived by Garzó & Montanero (2007) for arbitrary coefficients of restitution. Particu-
larising to elastic collisions we get

ξ = ρ µ θ−1/2(1 + θ)1/2γ, (3.2)

where

θ =
mTg

mgT
(3.3)

is the ratio of the mean square velocities of granular and molecular gas particles. The

zeroth-contributions to the production rates are ζ(0) = (vthζ
∗)/ℓ and ζ

(0)
g = (vthζ

∗
g )/ℓ,

where

ζ∗ =

√
2π(d−1)/2

dΓ
(

d
2

) (1− α2), ζ∗g = 2x(1− x2)µ1/2ε, (3.4)

and x and ε are defined by Eqs. (3.8) and (3.9) of the main text. The Maxwellian
approximation to the steady temperature ratio T/Tg can be obtained by inserting the
expressions (3.4) of ζ∗ and ζ∗g into the (exact) steady-state condition ζ∗ + ζ∗g = 0. This
yields the following cubic equation for x:

2x(x2 − 1) = ϑ, ϑ =

√
2π(d−1)/2

dΓ
(

d
2

) µ−1/2ε−1(1− α2). (3.5)

The physical root of Eq. (3.5) can be written as (Santos 2003)

x =

{ √
3
3

{√
3 cos

[
1
3 sin

−1
(

3
√
3

4 ϑ
)]

+ sin
[
1
3 sin

−1
(

3
√
3

4 ϑ
)]}

, ϑ ⩽ 4
√
3

9

2
√
3

3 cosh
[
1
3 cosh

−1
(

3
√
3

4 ϑ
)]

, ϑ ⩾ 4
√
3

9 .
(3.6)
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The temperature ratio T/Tg in the steady state is then given by

T

Tg
=

m/mg(
1 + m

mg

)
x2 − 1

. (3.7)

With respect to the functions (A,B, Cij ,D,E), it is useful to write them in a series
expansion of Sonine (Laguerre) polynomials. In practice only the leading terms in these
expansions are retained; they provide a quite accurate description over a wide range of
inelasticity. In addition, when the cumulants a2 are neglected, it is straightforward to
prove that Eq. (2.15) yields D = 0 and so, the production rates ζU = ζUg = 0. Non-
vanishing contributions to both production rates (which arise from a2) are expected to
be very small (Gómez González & Garzó 2019). Thus, we will focus here our attention
in the Navier–Stokes–Fourier transport coefficients η, κ, µ, and κU . To obtain them,
we consider the leading Sonine approximations to the unknowns A, B, Cij , D, and E
and neglect non-Gaussian corrections to the zeroth-order distribution f (0) (i.e., we take
a2 = 0). Since the procedure to obtain these expressions is quite similar to the one
employed in some previous works on granular binary mixtures (Garzó & Dufty 2002;
Garzó & Montanero 2007), only some partial results will be displayed in this section.

3.1. Leading Sonine approximation to η

In the case of the shear viscosity η, the leading Sonine approximation to Cij(V) (lowest
degree polynomial) is

Cij(V) → −f (0)(V)Rij(V)
η

nT 2
. (3.8)

Since Rij(V) is a traceless tensor, then Kℓ[Rij ] = 0, and the integral equation (2.34)
reads

− η

nT 2

{
L[f (0)Rij ]− Jg[f

(0)Rij , f
(0)
g ]
}
= Cij . (3.9)

To determine η, we multiply both sides of Eq. (3.9) by Rij(V) and integrate over velocity.
The result can be written as

1

(d− 1)(d+ 2)

η

nT 2

{∫
dvRij(V)L

[
f (0)Rij

]
−
∫

dvRij(V)Jg

[
f (0)Rij , f

(0)
g

]}
= p,

(3.10)
where use has been made of the result∫

dvRij(V)Cij(V) = −d(d+ 1)− 2

d

∫
dvmV 2f (0)(V) = −(d+ 2)(d− 1)p. (3.11)

The collision integral involving the linearised Boltzmann collision operator L is given
by (Brey et al. 1998)

1

(d− 1)(d+ 2)

1

nT 2

∫
dvRij(V)L

[
f (0)Rij

]
= ν∗ην0, (3.12)

where ν∗η is defined by Eq. (5.2) of the main text and ν0 = p/η0, η0 being the shear viscos-
ity of a dilute gas of elastic hard spheres. The collision integral involving the Boltzmann–
Lorentz operator Jg can be obtained from previous works on granular mixtures (Garzó
& Dufty 2002; Garzó & Montanero 2007) when one particularises to elastic collisions. In
terms of the drift coefficient γ, the result is

− 1

(d− 1)(d+ 2)

1

nT 2

∫
dvRij(V)Jg

[
f (0)Rij , f

(0)
g

]
= ν̃ηγ, (3.13)
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where ν̃η is given by Eq. (5.3) of the main text. The expression for η can be easily
obtained when one takes into account Eqs. (3.12) and (3.13) in Eq. (3.10).

3.2. Leading Sonine approximation to κ, µ, and κU

The heat flux transport coefficients κ, µ, and κU are defined in terms of A, B, and E,
respectively. Their leading Sonine approximations are given by

A(V) → cκS(V)f (0)(V), B(V) → cµS(V)f (0)(V), E(V) → cκU
S(V)f (0)(V),

(3.14)
where the Sonine coefficients cκ, cµ, and cκU

are defined, respectively, as cκ
cµ
cκU

 =
2

d(d+ 2)

m

nT 3

∫
dV

 A(V) · S(V)
B(V) · S(V)
E(V) · S(V)

 = −

 2
d+2

m
nT 2κ

2
d+2

m
T 3µ

2
d+2

m
nT 3κU

 . (3.15)

Using the Sonine approximations (3.14), the collision integral (2.9) [when X = Si(V)] is

Ki[Sj ] =

∫
dv mVi Jg[Sjf

(0), f (0)
g ] = −δij

1

2
nT 2µθ−1/2 (1 + θ)

−1/2
γ. (3.16)

Taking into account Eq. (3.16), the integral equation (2.32) becomes

− 2

d+ 2

m

nT 2
κ

{
−ζ(0)g χ

∂ ln ζ∗g
∂χ

f (0)S+ L[f (0)S]− Jg[f
(0)S, f (0)

g ]

}
= A

+
1

d+ 2

µγ

n
θ−1/2 (1 + θ)

−1/2 ∂f (0)

∂V
κ, (3.17)

where use has been made of the Sonine approximation (3.14) to A. As in the case of
the shear viscosity, κ is determined by multiplying both sides of Eq. (3.17) by S(V) and
integrating over V. After some algebra, one achieves

−ζ(0)g χ
∂ ln ζ∗g
∂χ

κ+
2

d(d+ 2)

m

nT 3
κ

{∫
dVS·L

[
f (0)S

]
−
∫

dVS·Jg
[
f (0)S, f (0)

g

]}
=

d+ 2

2

p

m
,

(3.18)
where we have accounted for the results

− 1

dT

∫
dV S(V) ·A(V) =

d+ 2

2m
p,

∫
dV S(V) · ∂f

(0)

∂V
= 0. (3.19)

The corresponding collision integrals can be written as (Brey et al. 1998; Garzó & Dufty
2002; Garzó & Montanero 2007)

2

d(d+ 2)

m

nT 3

∫
dVS · L

[
f (0)S

]
= ν∗κν0, (3.20)

− 2

d(d+ 2)

m

nT 3

∫
dVS · Jg

[
f (0)S, f (0)

g

]
= ν̃κγ, (3.21)

where ν∗κ and ν̃κ are given by Eqs. (5.6) and (5.7), respectively, of the main text. In

addition, according to the expression of ζ̃
(0)
g , one gets the relation

−ζ(0)g χ
∂ ln ζ∗g
∂χ

= βγ, β =
(
x−1 − 3x

)
µ3/2χ−1/2. (3.22)

Substitution of Eqs. (3.20)–(3.22) into Eq. (3.18) leads to the expression for κ.
The evaluation of the diffusive heat conductivity µ follows similar steps to those carried
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out in the evaluation of κ. Taking into account the leading Sonine approximations (3.14)
to A and B, the integral equation (2.33) reads

− 2

d+ 2

m

T 3
µ
{
L[f (0)S]− Jg[f

(0)S, f (0)
g ]
}
= B+

1

d+ 2

µγ

T
θ−1/2 (1 + θ)

−1/2 ∂f (0)

∂V
µ

− 2

d+ 2

m

nT 2
ζ(0)g κf (0)S, (3.23)

where use has been made of Eq. (3.16) and the result

ζ(0)g ε
∂ ln ζ∗g
∂ε

= ζ(0)g . (3.24)

Multiplying both sides of Eq. (3.23) by S(V) and integrating over velocity, one gets

(ν0ν
∗
κ + ν̃κγ)µ =

T

n
ζ(0)κ, (3.25)

where the steady state condition ζ
(0)
g = −ζ(0) has been employed. The solution to Eq.

(3.25) yields the final expression for µ.
Finally, we consider the coefficient κU . As said in the main text, it is a new transport

coefficient not present for dry granular monocomponent gases. Taking into account the
expression (3.2) of ξ, Eq. (3.16), and the leading Sonine approximation (3.14) to E, the
integral equation (2.36) reads

− 2

d+ 2

m

nT 3
κU

{
L[f (0)S]− Jg[f

(0)S, f (0)
g ]
}
= −µ θ−1/2(1 + θ)1/2γ

∂f (0)

∂V

+
1

d+ 2

µγ

nT
θ−1/2 (1 + θ)

−1/2 ∂f (0)

∂V
κU − mg

Tg
Jg[f

(0),Vf (0)
g ]. (3.26)

As in the cases of κ and µ, one multiplies both sides of Eq. (3.16) by S(V) and integrates
over velocity to get

(ν0ν
∗
κ + ν̃κγ)κU = −1

2
nTµ(1 + θ)−1/2θ−1/2Hγ, (3.27)

where use has been made of the result

mg

Tg

∫
dVS · Jg[f (0),Vf (0)

g ] = −dnT

2
µγ(1 + θ)−1/2θ−1/2 H. (3.28)

The expression of the quantity H is displayed in Eq. (5.12) of the main text. The final
expression for κU can be easily obtained from Eq. (3.27).

4. Linear stability analysis

Some intermediate mathematical steps for the linear stability analysis around the HSS
are offered in this section. We assume that we slightly perturb the HSS by small spatial
gradients and hence, the Navier–Stokes hydrodynamic equations are linearised around
the HSS. This state describes a homogeneous state (∇nH = ∇TH = 0) with vanishing

flow velocity fields (U = Ug = 0). In addition, the steady condition is ζ
(0)
H + ζ

(0)
gH = 0.

Here, the subscript H denotes quantities evaluated in the HSS. We suppose that the
deviations

δyβ(r, t) = yβ(r, t)− yβ,H (4.1)

are small. Here, δyβ(r, t) denotes the deviations of the hydrodynamic fields

{yβ ;β = 1, · · · , d+ 2} ≡ {n,U, T} (4.2)
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from their values in the homogeneous steady state. Moreover, as usual in the simulations
of clustering instabilities in fluid-solid systems (Fullmer et al. 2017), the molecular gas
properties are assumed to be constant and so, they are not perturbed.
Although the reference HSS is stationary [and so, in contrast to what happens in dry

granular gases, one does not have to eliminate the time dependence of the transport
coefficients through adequate changes of space and time (Brey et al. 1998; Garzó 2005)],
in order to compare the present stability analysis with the one carried out in the Brownian
limit (Gómez González & Garzó 2019), we introduce the following space and time
variables:

τ =
v0
2ℓ

t, r′ =
r

2ℓ
, (4.3)

where v0 =
√

TH/m and ℓ = 1/(nHσd−1). The dimensionless time scale τ measures the
average number of collisions per particle in the time interval between 0 and t. The unit
length r′ is proportional to the mean free path ℓ of solid particles.
A set of Fourier transformed dimensionless variables are introduced as

ρk(τ) =
δnk(τ)

nH
, wk(τ) =

δUk(τ)

v0
, θk(τ) =

δTk(τ)

TH
, (4.4)

where the elements of the set δykβ ≡ {ρk(τ),wk(τ), θk(τ)} are defined as

δykβ(τ) =

∫
dr′e−ik·r′δyβ(r

′, τ). (4.5)

Note that here the wave vector k is dimensionless.
The evolution equation for the d− 1 transverse velocity components wk⊥ is given by

∂wk⊥

∂τ
= λ⊥(k)wk⊥, (4.6)

where

λ⊥(k) = 2ξ∗ +
1

2
η∗k2 − 2

√
2d

d+ 2
µγ∗κ∗

UX, (4.7)

where ξ∗ = ℓξH/(ρHv0), η∗ = ηH/(σ1−d
√
mTH), and κ∗

U = κUH/(dnHTH). In the
Brownian limit (m/mg → ∞), ξ∗ =

√
2γ∗, X → 0, and the expression (4.7) for λ⊥(k) is

consistent with the one obtained in previous works (Gómez González & Garzó 2019).
The matrix equation obeying the remaining three longitudinal modes is

∂δykβ(τ)

∂τ
+Mβµδykµ(τ) = 0, (4.8)

where δykβ(τ) denotes now the set
{
ρk, wk∥, θk

}
and M is the square matrix

M =

 0 ik 0

ik(1−
√
2 d
d+2µγ

∗µX) 2ξ∗ −Θ(k) ik(1−
√
2 d
d+2µγ

∗D∗
TX)

2
√
2ζ∗ + µ∗k2 ik

(
2
d − 2κ∗

U

)
2
√
2
(
ζgγ

∗ + 1
2ζ

∗)+D∗
Tk

2

 , (4.9)

where D∗
T = κH/(dσ1−d

√
TH/m), µ∗ = ρHµH/(dσ1−dTH

√
mTH),

ζg =

(
µTH

Tg

)1/2[
xH

(
1− x2

H

)
− µTg

xHTH

(
1− 3x2

H

) ]
, Θ(k) =

2
√
2d

d+ 2
µγ∗κUX−d− 1

d
η∗k2.

(4.10)
Here, xH is defined by Eq. (3.8) of the main text with the replacement T → TH .
The longitudinal three modes have the form exp [λℓ(k)τ ] for ℓ = 1, 2, 3,. Here, the
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eigenvalues λℓ(k) of the matrix M are the solutions of the cubic equation

λ3 +W (k)λ2 + Y (k)λ+ Z(k) = 0, (4.11)

where

W (k) =
√
2
(
ζ∗ + 2ζgγ

∗ +
√
2ξ∗
)
− 2

√
2d

d+ 2
µγ∗κUX + k2

(
D∗

T +
d− 1

d
η∗
)
, (4.12)

Y (k) =
d− 1

d
η∗D∗

T k
4 + k2

{
2

d+ 2
+
√
2
d− 1

d

(
ζ∗ + 2ζgγ

∗) η∗ − d

d+ 2

(√
2µXµ∗γ∗ − 1

)
+

2

d(d+ 2)
(dκ∗

U − 1)
[
d
(√

2µXD∗
T γ

∗ − 1
)
− 2
]
+

2

d+ 2
D∗

T [(d+ 2)ξ∗

−
√
2dµXκ∗

Uγ
∗
]}

+
2
√
2

d+ 2

(
ζ∗ + 2ζgγ

∗) [(d+ 2)ξ∗ −
√
2dµXκ∗

Uγ
∗
]
, (4.13)

Z(k) = k2

{
√
2
(
2ζgγ

∗ − ζ∗
)
+

2d

d+ 2
µXγ∗ [2 (ζ∗D∗

T − ζgµ
∗γ∗)− ζ∗µ∗]+k2 (D∗

T − µ∗)

}
.

(4.14)
In the Brownian limit, Eqs. (4.11)–(4.14) are consistent with those obtained by
Gómez González & Garzó (2019). †
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Khalil, N. & Garzó, V. 2014 Homogeneous states in driven granular mixtures: Enskog kinetic

theory versus molecular dynamics simulations. J. Chem. Phys. 140, 164901.
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