Droplet breakup in airflow with strong shear effect: Movie captions

Zhikun Xu, Tianyou Wang and Zhizhao Che[†]

State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China

(19 February 2022)

• Movie 1: Video clip for figure 4. Typical process of droplet breakup in shear flow with synchronised visualisation from the bottom view and the side view at $We_g = 230$, $We_d = 19.9$, $\chi = 0.295$.

• Movie 2: Video clip for figure 6c. Liquid ridge formation due to lateral RT instability at $We_g = 917$, $We_g = 36.5$, $\chi = 0.199$.

• Movie 3: Video clip for figure 7a. Collapse of the droplet front rim at $We_g = 230$, $We_d = 19.9$, $\chi = 0.295$.

• Movie 4: Video clip for figure 7b. Shrinkage of the droplet front rim at $We_g = 230$, $We_d = 36.5$, $\chi = 0.399$.

• Movie 5: Video clip for figure 15b. Droplet breakup with the tail bag at Oh = 0.47, $We_g = 219$, $\chi = 0.354$.

• Movie 6: Video clip for figure 15c. Droplet breakup in the regime of swing breakup with front rim collapse at Oh = 0.95, $We_g = 873$, $\chi = 0.177$.

• Movie 7: Video clip for figure 17. Droplet breakup in the regime of swing breakup with front rim shrinkage at $We_q = 230$, $We_d = 36.5$, $\chi = 0.399$.

• Movie 8: Video clip for figure 18. Droplet breakup in the regime of swing breakup with front rim collapse at $We_q = 480$, $We_d = 65.4$, $\chi = 0.400$.

• Movie 9: Video clip for figure 19. Droplet breakup in the regime of shear-stripping breakup at $We_g = 230$, $We_d = 312$, $\chi = 1.165$.

• Movie 10: Video clip for figure S1. Image processing for measuring fragment size based on fragment tracking.