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1. Weak formulations

The transformation of the governing equations into their weak forms involves three
steps: multiplying the governing equations for each variables with their corresponding
test functions and integrating over the domain, integrating by part to reduce the order
of integration, and, finally, incorporating the boundary conditions into the resulting
relations. Before proceeding to derive the weak forms of the equations, it is important
to define the necessary functional spaces to which the solution and test functions must
belong (Heinrich & Pepper 1999):

(i) The L2 (Ω) space: This is a space of functions f (r) defined in Ω that are square
integrable over Ω:

L2 (Ω) =

{
f (r) |

∫
Ω

(f (r))
2
dΩ <∞

}
. (1.1)

(ii) The L2
0 (Ω) subspace: This is a subspace of L2 (Ω) defined in Ω such that for

functions defined in L2 (Ω), the following equation is satisfied:

L2
0 (Ω) =

{
f |f ∈ L2 (Ω) and

∫
Ω

f (r) = 0

}
. (1.2)

(iii) The Sobolev space H1 (Ω): this is a space of functions f (r) defined in Ω such that
both the function and all its first partial derivatives are in L2 (Ω)

H1 (Ω) =

{
f (r) |

∫
Ω

[
|f |2 + |∇f |2

]
dΩ <∞

}
. (1.3)

(iv) The Sobolev subspace H1
0 (Ω): this is a subspace of the Sobolev space H1 (Ω) for

which the functions defined in space H1 vanish on the portions of the boundary of Ω
where Dirichilet boundary conditions are imposed ( i.e ΓD = Γin + Γwall ):

H1
0 (Ω) =

{
f |f ∈ H1 (Ω) and f (r) = 0 if r ∈ ΓD

}
. (1.4)

Let Φ ∈ H1
0 and ϕ ∈ L2

0 be the test functions corresponding to u ∈ H1 and p ∈ L2,
respectively. Next we take the inner product of momentum equation with Φ , multiply
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continuity equation with ϕ and integrate the equations over the domain:∫
Ω

{
∂u

∂t
· Φ+ [(u · ∇) u] · Φ− [∇ ·T] · Φ

}
dΩ = 0, (1.5)

∫
Ω

{(∇.u)ϕ} dΩ = 0. (1.6)

Equations (1.5) and (1.6) are the weighted residual forms of the momentum and
continuity equations, respectively. Integrating the last term on the left-hand-side of (1.5)
by parts, ∫

Ω

{[∇ ·T] · Φ} dΩ =

∫
Γ

{n ·T · Φ} dΓb −
∫
Ω

{T : ∇ (u)} dΩ, (1.7)

where

Γ = Γb + Γin + Γwall + Γout.

Enforcing the outlet boundary condition and taking into consideration that Φ ∈ H1
0 ,

hence Φ are zero where essential boundary conditions are imposed, we are left with

Γ = Γb.

Making use of the following expression for T,

T = −pI +Nf
−1 (∇u +∇uT

)
(1.8)

(1.5) becomes∫
Ω

{
∂u

∂t
· Φ+ [(u · ∇) u] · Φ+ 2Nf

−1E (u) : E (Φ)− p (∇. Φ)

}
dΩ

−
∫
Γb

{n ·T · Φ} dΓb = 0. (1.9)

The traction term in the last term on the left-hand-side of (1.9) can be decomposed into
its normal and tangential components (Pozrikidis 2011):

n ·T = [n ·T · n] n + n× [n ·T× n] , (1.10)

thereby allowing the incorporation of normal stress condition and tangential stress
condition into (1.9) to give∫

Ω

{
∂u

∂t
· Φ+ [(u · ∇) u] · Φ+ 2Nf

−1E (u) : E (Φ)− p (∇. Φ)

}
dΩ

−
∫
Γb

{[
Eo−1κ+ z− Pb

]
n · Φ

}
dΓb = 0. (1.11)

Equations (1.6) and (1.11) are the weak forms of the governing equations. Similarly for
the kinematic boundary condition, we have∫

Ab

{[
drb
dt
· n− u · n

]
ξ

}
dAb = 0. (1.12)

where rb(t) represents the position vector for the location of the interface Γ 0
b and ξ denote

the test functions for the interface deformation magnitude.
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Table 1: Dimensionless parameters corresponding to the fluid properties used to validate
the numerical predictions against the experimental work of Bugg & Saad (2002).

Fluid properties Dimensionless parameters

ρ
(
kgm−3

)
µ
(
Nsm−2

)
γ
(
Jm−2

)
vb

(
m3

)
Nf Eo Um Hb

911 84 ×10−3 3.28 ×10−2 10 ×10−6 88.95 98.33 0 2.00

2. Steady states: validation

The numerical method was validated by simulating the experiment of Bugg & Saad
(2002) where the velocity field around a Taylor bubble rising in a stagnant olive oil in a
pipe of diameter 19 mm was measured using Particle Image Velocimetry (PIV) at five
different positions. The fluid properties used in the experiment and the corresponding
dimensionless parameters are given in Table 1. In this table, Hb denotes the dimensionless
equivalent height of pipe that the gas would occupy if it were to completely filled the
pipe cross section. For the validation and the results discussed in the main article, a
fixed dimensionless distance of La = 1.0 and Lb = 4.5 are maintained ahead and below
the bubble nose, respectively. These distances and mesh structure were tested to ensure
that the inlet and outlet boundaries as well as the mesh have insignificant influence on
the steady-state results. The initial bubble shape and the converged steady-state bubble
shape for the validation are shown in figures 3a and 3b of the main article.

The predicted dimensionless bubble rise speed is 0.2928, corresponding to a deviation
of 3.4% from the experimentally measured value of 0.303. Further comparisons with the
experiment were carried out using the flow field results at five measurement positions
around the bubble. Ahead of the bubble, velocity measurements were taken along the pipe
axis and in the radial direction at an axial distance of 0.111D. figures 1a and 1b show the
velocity profiles for these two locations and are well predicted by our simulation. figure 1c
compares the velocity measurement taken at an axial distance of 0.504D below the bubble
nose. At this point, the magnitude of the radial velocity component is still developing.
When the velocity in the film is fully-developed, the magnitude of the radial velocity
at all points in the radial direction is approximately zero. By progressively plotting the
radial velocity profile at various points below the bubble nose, a point is reached at which
the radial velocity becomes zero. The axial velocity profile at this location is shown in
figure 1d and the dimensionless film thickness was measured to be 0.1235. Although no
experimental measurement of the film thickness was reported in Bugg & Saad (2002),
the deviation of the numerical simulation results from the theoretical estimated value of
Brown (1965) using (6.1), which predicts the film thickness to be 0.1193, is 3.52%.

As the liquid emerges from the falling film region into the wake of the bubble, the
radial component of its velocity reappears in order to redirect the liquid from the film
back towards the center of the pipe. Figure 1e shows the velocity profile in the wake
of the Taylor bubble at an axial distance of 0.2D below the bubble bottom and is also
adequately well predicted.
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Figure 1: Validation of the numerical predictions (lines) for the velocity profiles for the
positions indicated in Fig. 2 against the PIV measurements (symbols) of Bugg & Saad
(2002); (a) dimensionless axial velocity component, uz, along the pipe axis (position 1);
(b) dimensionless axial, uz, and radial, ur, velocity components at z

D = 0.111 ahead of the
bubble nose (position 2); (c) dimensionless axial and radial velocity components in the
developing film at z

D = 0.504 below the bubble nose (position 3) and (d) dimensionless
axial velocity component in the fully-developed film (position 4); (e) dimensionless axial
and radial components of velocity at distance z

D = 0.20 below the bubble bottom
(position 5).
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3. Curvature linearisation

For a three-dimensional axisymmetric surface, the interface location in any (r, z) plane
is sufficient for computing the curvature of the surface. Consider that the interface in
any such plane is spanned by a curve with the coordinates of any point on the curve
being (r, z). In addition, let the interface be parametrised by length of arc s so that the
position vector of any point on the interface is given as

r = r(s)ir + z(s)iz. (3.1)

The total curvature at any given point on the interface is defined as

κ = −∇s · n, (3.2)

where r (s) and z (s) are the radial and axial coordinates of the points on the interface,
respectively; n remains the unit normal to the interface and ∇s is the surface tangential
gradient operator which is given as

∇s = (I− n⊗ n)∇. (3.3)

For a three-dimensional axisymmetric surface, (3.3) simplifies to

∇s = tr
d

ds
ir +

1

r

∂

∂θ
iθ + tz

d

ds
iz, (3.4)

and (3.2) becomes

κ = −
(

t · dn
ds

+
nr
r

)
, (3.5)

where t is the unit tangent vector to the interface with components tr, tθ and tz in
the radial, azimuthal and axial directions, respectively; d

ds = (t · ∇) is an operator that
denotes the derivative in the tangential direction; nr is the radial component of the unit
normal vector, n.

Let us imagine that the deformed interface can be expressed as a summation of the
undeformed interface and a very small deformation. Thus, the deformed interface can be
written as

r = r0 + x, (3.6)

where r0 = r0ir + θ0iθ + z0iz and r = rir + θiθ + ziz are the undeformed (i.e base) and
deformed (i.e perturbed) interface position vectors, respectively; x = xrir + xθiθ + xziz,
as mentioned in the previous section, is the interface deformation vector and is taken
to be very small in magnitude. Linearisation of the unit normal to, and elemental arc
length on, the deformed interface about the undeformed interface give (Kruyt et al. 1988;
Ramanan & Engelman 1996; Weatherburn 1927)

n = n0 − n0 ×∇s × x, (3.7)

ds =

(
1 + t0 · dx

ds0

)
ds0, (3.8)

d

ds
=

(
1− t0 · dx

ds0

)
d

ds0
. (3.9)

On further simplification of (3.7)

n = n0 − t0
(

n0 · dx
ds0

)
− n0

r0
· ∂x

∂θ0
iθ. (3.10)
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Substituting (4.5) together with (3.6) and (3.9) into (3.5), the linearised curvature
neglecting all terms of nonlinear in x gives

κ = κ0 + κ1, (3.11)

with

κ0 = −
(

t0 · dn
0

ds0
+
n0r
r0

)
, (3.12)

κ1 =
1

r0
d

ds0

[
r0
(

n0 · dx
ds0

)]
+ 2

(
t0 · dx

ds0

)(
t0 · dn

0

ds0

)
+

n0

r02
· ∂

2x

∂θ02
+
xrn

0
r

r02

− dn0

ds0
· dx
ds0

. (3.13)

When (4.6) is further simplified by allowing the deformation vector to be of the form

x = hn0, (3.14)

it results in

κ1 =
1

r0
d

ds0

(
r0
dh

ds0

)
+ h

[
κ0

2
a + κ0

2
b +

1

r02
∂2h

∂θ02

]
, (3.15)

which is the same as the expression derived for curvature perturbation in Chireux et al.
(2015), albeit through a different and longer route. In arriving at (3.15), we have used
the following Frenet-Serret relations

dt

ds
= κn, (3.16a)

dn

ds
= −κt. (3.16b)

Equations (3.13) and (3.15) are the expressions for curvature deformation and can be
used for an axisymmetric deformation by setting the term containing derivative with
respect to the azimuthal coordinate to zero to obtain

κ1 =
1

r0
d

ds0

(
r0
dh

ds0

)
+ h

[
κ0

2
a + κ0

2
b

]
. (3.17)

In (3.7)-(3.15), n0 is the unit normal vector to the undeformed interface and n0r, n
0
θ and

n0z are its component in the radial, azimuthal and axial directions, respectively; t0 is
the unit tangent vector to the undeformed interface with components t0r, t

0
θ and t0z in

the radial, azimuthal and axial directions, respectively; ds and ds0 are the elemental arc
length for the deformed and undeformed interfaces, respectively; κ0 is the curvature of
the undeformed surface and κ1 is the addition to the undeformed interface curvature (also
referred to as curvature perturbation in the context of linear stability analysis) due to
linearisation of the deformed interface about the undeformed interface; h is the magnitude
of the interface deformation in the direction normal to the undeformed interface. κ0a and
κ0b are the two principal curvatures of the undeformed interface (3.12) corresponding to
the curvature in the r − z and r − θ planes, respectively, defined as

κ0a = t0 · dn
0

ds0
, (3.18a)

κ0b =
n0r
r0
. (3.18b)
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4. Development of perturbation equation model and eigenvalue
problem

We begin the model development from the derived weak forms of the continuity,
momentum and kinematic boundary conditions equations, (1.6), (1.11) and (1.12).
Similar to domain perturbation, we assume that the three-dimensional base flow domain
is perturbed by the addition of infinitesimal deformation field x̃ to its position vector
and that (1.6), (1.11) and (1.12) are valid on the three-dimensional perturbed domain.

Let the position vector of the perturbed domain be written as

r = r0 + εx̃, (4.1)

where r0 = (r0, θ0, z0) represents the position vector of the unperturbed three-dimensional
base flow domain, x̃ = (x̃r, x̃θ, x̃z) is a deformation field defined over the entire base
flow domain, and ε � 1 to signify the infinitesimally small nature of the applied
perturbations. The linearised elemental volume of the perturbed three-dimensional
domain is given as (Cairncross et al. 2000; Carvalho & Scriven 1999)

dV = rdrdθdz = (1 +∇ · x̃)r0dr0dθ0dz0

= (1 +∇ · x̃)dΩ0dθ0; (4.2)

thus, we can relate the elemental volume in the perturbed three-dimensional domain
to the base flow two-dimensional axisymmetric domain, dΩ0 = r0dr0dz0. Similarly, an
elemental area on the perturbed interface in the three-dimensional domain, dAb, can be
related to base flow length of arc, Γ 0

b in the two-dimensional axisymmetric domain:

dAb = (1 +∇s · x̃) dΓ 0
b dθ

0, (4.3)

where ∇s is the surface gradient operator; the interface terms can be linearised as follows

n = n0 + εñ, (4.4a)

κ = κ0 + εκ̃, (4.4b)

Φ = Φ+ ε (x̃ · ∇)Φ, (4.4c)

u = u + ε (x̃ · ∇) u; (4.4d)

here, n0 and κ0 are the base state interface normal vector and curvature, and ñ and κ̃
represent the normal vector and curvature perturbations, respectively (see section 3):

ñ = −t0
(

n0 · dx̃
ds0

)
− n0

r0
· ∂x̃

∂θ0
, iθ (4.5)

κ̃ =
1

r0
d

ds0

[
r0
(

n0 · dx̃
ds0

)]
+ 2

(
t0 · dx̃

ds0

)(
t0 · dn

0

ds0

)
+

n0

r02
· ∂

2x̃

∂θ02
+
x̃rn

0
r

r02
− dn0

ds0
· dx̃
ds0

, (4.6)

where d
ds0 = t · ∇ is the derivative along the arc length s on the base state interface.

Substitution into (1.6), (1.11) and (1.12) of (4.1)-(4.4), together with the flow field
perturbations

u = u0 + εũ, (4.7a)

p = p0 + εp̃, (4.7b)
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followed by neglecting all terms of order ε2 respectively yields the following leading order
momentum, continuity, and kinematic condition equations∫ 2π

0

{∫
Ω0

{[(
u0 · ∇

)
u0
]
· Φ+ 2Nf

−1E
(
u0
)

: E (Φ)− p0 (∇. Φ)
}
dΩ0

−
∫
Γ 0
b

{[
Eo−1κ0 + z0 − P 0

b

]
n0 · Φ

}
dΓ 0

b

}
dθ0 = 0, (4.8)

∫ 2π

0

∫
Ω0

{{(
∇.u0

)
ϕ
}

[1 +∇ · x̃]
}
dΩ0dθ0 = 0, (4.9)

∫ 2π

0

∫
Γ 0
b

{{[
dr0b
dt
· n0 − u0 · n0

]
ξ

}
[1 +∇s · x̃]

}
dΓ 0

b dθ
0 = 0. (4.10)

It is also possible to write the following equations at O(ε) to yield equations that feature
the perturbation variables: the momentum conservation equation,∫ 2π

0

∫
Ω0

{
∂ũ

∂t
· Φ+

[(
u0 · ∇

)
ũ + (ũ · ∇) u0

]
· Φ+ 2Nf

−1E (ũ) : E (Φ)

}
dΩ0dθ0

−
∫ 2π

0

∫
Ω0

{p̃ (∇. Φ)} dΩ0dθ0

−
∫ 2π

0

∫
Γ 0
b

{[
Eo−1κ̃+ z̃

]
n0 · Φ

}
dΓ 0

b dθ
0

+

∫ 2π

0

∫
Γ 0
b

x̃ · n0
{[(

u0 · ∇
)
u0
]
· Φ+ 2Nf

−1E
(
u0
)

: E (Φ)− p0 (∇. Φ)
}
dΓ 0

b dθ
0

−
∫ 2π

0

∫
Γ 0
b

{[
Eo−1κ0 + z0 − P 0

b

] [
ñ · Φ+ [(x̃ · ∇)Φ] · n0 + (∇s · x̃) n0 · Φ

]}
dΓ 0

b dθ
0

= 0, (4.11)

where u0, p0, and P 0
b represent the base flow solutions for the variables; and ũ and p̃

denote the perturbations to the flow field variables, and the last two lines of (4.11) are
due to the linearisation of the domain and boundary terms of (1.11) where we have used
Gauss’s divergence theorem to restrict the deformation to the interface as it is expected
in classical linear stability formulation; the continuity equation,∫ 2π

0

∫
Ω0

{(∇. ũ)ϕ} dΩ0dθ0 = 0, (4.12)

and the kinematic condition:∫ 2π

0

∫
Γ 0
b

{[
dx̃

dt
· n0 − ũ · n0 − u0 · ñ−

[
(x̃ · ∇) u0

]
· n0

]
ξ

}
dΓ 0

b dθ
0 = 0. (4.13)

Simplifying (4.11)-(4.13) further by substituting for ñ and κ̃ using (4.5) and (4.6),
respectively, and taking the deformation field to be of the form x̃ = h̃n0, since the
deformation has been restricted to the interface and making use of the relations

u0 =
(
u0 · n0

)
n0 +

(
u0 · t0

)
t0, (4.14a)

∇ =
(
I− n0 ⊗ n0

)
· ∇+

(
n0 ⊗ n0

)
· ∇, (4.14b)
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(4.11)-(4.13), after some algebra, can be expressed as follows∫ 2π

0

∫
Ω0

{
∂ũ

∂t
· Φ+

[(
u0 · ∇

)
ũ + (ũ · ∇) u0

]
· Φ+ 2Nf

−1E (ũ) : E (Φ)

}
dΩ0dθ

−
∫ 2π

0

∫
Ω0

{p̃ (∇. Φ)} dΩ0dθ

−
∫ 2π

0

∫
Γ 0
b

Eo−1

{
−dh̃
ds

[
n · dΦ

ds
− κa (t · Φ)

]
+

[
h̃
(
κ2a + κ2b

)
+

1

r2
∂2h̃

∂θ2

]
n · Φ

}
dΓ 0

b dθ

−
∫ 2π

0

∫
Γ 0
b

{
h̃nz (n · Φ)

}
dΓ 0

b dθ

+

∫ 2π

0

∫
Γ 0
b

h̃

{(
u0 · t

) [du0

ds
· Φ
]

+

[
−p0 + 2N−1f

(
t · du

0

ds

)](
t · dΦ

ds

)
+

[
−p0 + 2N−1f

u0r
r

](
Φr
r

+
1

r

∂Φθ
∂θ

)}
dΓ 0

b dθ

+

∫ 2π

0

∫
Γ 0
b

{[
Eo−1κ+ z − P 0

b

] [
(t · Φ)

dh̃

ds
+
Φθ
r

∂h̃

∂θ
+ h̃κ (n · Φ)

]}
dΓ 0

b dθ = 0,

(4.15)∫ 2π

0

∫
Ω0

{(∇. ũ)ϕ} dΩdθ = 0, (4.16)

∫ 2π

0

∫
Γ 0
b

{[
dh̃

dt
− ũ · n +

(
u0 · t

) dh̃
ds
− h̃

(
du0

dn
· n
)]

ξ

}
dΓ 0

b dθ = 0, (4.17)

where d
dn = (n · ∇) is the derivative in the normal direction. Equations (4.15)-(4.17) are

the perturbation equations for the linear analysis and in them we have suppressed the use
of the superscript ‘0′ to designate base state quantities for the unit tangent and normal
vectors for the sake of brevity.
We now transformed the perturbation equations to normal mode forms by assuming the
following forms for the perturbation variables:

ũ (r, θ, z, t) = û (r, z) e(imθ+βt), (4.18a)

p̃ (r, θ, z, t) = p̂ (r, z) e(imθ+βt), (4.18b)

h̃ (s, θ, t) = ĥ (s) e(imθ+βt), (4.18c)

and their corresponding test functions as

Φ (r, θ, z) = Φ̄ (r, z) e(−imθ), (4.19a)

ϕ (r, θ, z) = ϕ̄ (r, z) e(−imθ), (4.19b)

ξ (s, θ) = ξ̄ (s) e(−imθ), (4.19c)

where û, p̂, and ĥ are complex functions of space representing the amplitude of
the velocity, pressure, and interface deformation perturbations, respectively; m is a
dimensionless (integer) wave number in the azimuthal direction θ; β = βR + iβI is
the complex growth rate which can be decomposed into its real βR and imaginary
βI parts denoting the temporal growth rate and frequency, respectively: if βR is
positive (negative), the disturbance grows (decays) exponentially in time and the base
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flow is linearly unstable (stable); if βR is zero, the disturbance is neutrally stable.
Substituting (4.18) and (4.19) into (4.15)-(4.17), separating the momentum equation
into its components, yields the following equations governing the normal mode evolution
of the perturbations as a function of Nf , Eo, Um, and m:

∫
Ω0

{
βûrΦ̄r +

[
ûr
∂u0r
∂r

+ ûz
∂u0r
∂z

+ u0r
∂ûr
∂r

+ u0z
∂ûr
∂z

]
Φ̄r +N−1f

[
2
∂ûr
∂r

∂Φ̄r
∂r

+
(
2 +m2

) ûrΦ̄r
r2

+ 3im
ûθΦ̄r
r2
− im

Φ̄r
r

∂ûθ
∂r

+
∂Φ̄r
∂z

(
∂ûr
∂z

+
∂ûz
∂r

)]
− p̂

(
∂Φ̄r
∂r

+
Φ̄r
r

)}
dΩ0

−
∫
Γ 0
b

Eo−1

{
−dĥ
ds

[
nr
dΦ̄r
ds
− κa

(
trΦ̄r

)]
+ ĥ

[
κ2a + κ2b −

m2

r2

]
nrΦ̄r

}
dΓ 0

b

−
∫
Γ 0
b

{
ĥnz

(
nrΦ̄r

)}
dΓ 0

b

+

∫
Γ 0
b

ĥ

{(
u0rtr

) [du0r
ds

Φ̄r

]
+

[
−p0 + 2N−1f

(
tr
du0r
ds

)](
tr
dΦ̄r
ds

)
+

[
−p0 + 2N−1f

u0r
r

](
Φ̄r
r

)}
dΓ 0

b

+

∫
Γ 0
b

{[
Eo−1κ+ z − P 0

b

] [(
trΦ̄r

) dĥ
ds

+ ĥκ
(
nrΦ̄r

)]}
dΓ 0

b = 0, (4.20)

∫
Ω0

{
βûθΦ̄θ +

[
u0r
∂ûθ
∂r

+ u0z
∂ûθ
∂z

+
u0rûθ
r

]
Φ̄θ +N−1f

[(
1 + 2m2

) ûθΦ̄θ
r2

+
∂ûθ
∂z

∂Φ̄θ
∂z

+
∂ûθ
∂r

∂Φ̄θ
∂r
−
(
ûθ
r

∂Φ̄θ
∂r

+
Φ̄θ
r

∂ûθ
∂r

)
+ im

(
ûr
r

∂Φ̄θ
∂r

+
ûz
r

∂Φ̄θ
∂z

)
− 3im

ûrΦ̄θ
r2

]
−p
(
−imΦ̄θ

r

)}
dΩ0 +

∫
Γ 0
b

ĥ

{[
−p0 + 2N−1f

u0r
r

](
−imΦ̄θ

r

)}
dΓ 0

b

+

∫
Γ 0
b

{
ĥ
[
Eo−1κ+ z − P 0

b

] [
im
Φ̄θ
r

]}
dΓ 0

b = 0, (4.21)
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Ω0

{
βûzΦ̄z +

[
ûr
∂u0z
∂r

+ ûz
∂u0z
∂z

+ u0r
∂ûz
∂r

+ u0z
∂ûz
∂z

]
Φ̄z +N−1f

[
2
∂ûz
∂z

∂Φ̄z
∂z

+m2 ûzΦ̄z
r2

−imΦ̄z
r

∂ûθ
∂z

+
∂Φ̄z
∂r

(
∂ûr
∂z

+
∂ûz
∂r

)]
− p̂

(
∂Φ̄z
∂z

)}
dΩ0

−
∫
Γ 0
b

Eo−1

{
−dĥ
ds

[
nz
dΦ̄z
ds
− κa

(
tzΦ̄z

)]
+ ĥ

[
κ2a + κ2b −

m2

r2

]
nzΦ̄z

}
dΓ 0

b

−
∫
Γ 0
b

{
ĥnz

(
nzΦ̄z

)}
dΓ 0

b

+

∫
Γ 0
b

ĥ

{(
u0ztz

) [du0z
ds

Φ̄z

]
+

[
−p0 + 2N−1f

(
tz
du0z
ds

)](
tz
dΦ̄z
ds

)}
dΓ 0

b

+

∫
Γ 0
b

{[
Eo−1κ+ z − P 0

b

] [(
tzΦ̄z

) dĥ
ds

+ ĥκ
(
nzΦ̄z

)]}
dΓ 0

b = 0, (4.22)

∫
Ω0

{[
∂ûr
∂r

+
ûr
r
− im

ûθ
r

+
∂ûz
∂z

]
ϕ̄

}
dΩ0 = 0, (4.23)

∫
Γ 0
b

{[
βĥ− û · n +

(
u0 · t

) dĥ
ds
− ĥ

(
du0

dn
· n
)]

ξ̄

}
dΓ 0

b = 0. (4.24)

The combined finite element forms for the perturbations (4.20)-(4.24) can be recast as
a generalised eigenvalue problem

βBy = Jy, (4.25)

with β being the eigenvalue, B the mass matrix, y the eigenfunctions, and J the Jacobian
matrix.
The boundary conditions at the inlet, wall, and outlet reduce to the following conditions
on the perturbations:

û = 0 on Γ 0
in and Γ 0

wall, (4.26)

n · T̂ · n = 0 and (I− n⊗ n) · û = 0 on Γ 0
out, (4.27)

where the tensor T̂ is expressed by

T̂ = −p̂+ 2N−1f Ê (û) ; Ê (û) =
1

2

[
∇û +∇ûT

]
.

We stress that while it is customary to impose additional conditions along the axis
of symmetry Γ 0

sym, we did not apply any such conditions in this case because the
model equations were written around the perturbed three-dimensional domain and then
linearised before integrating out the θ dependence.

5. Linear stability: validation

We test the validity of our linear stability model and its numerical solution procedure
by examining the stability of a spherical bubble of fixed volume in a stagnant liquid with
negligible gravitational and boundary effects. The bubble is stable under these conditions
and its motion is governed by an analytical solution (Miller & Scriven 1968; Prosperetti
1980). We compare our numerical results for the eigenvalues with this solution given in
Prosperetti (1980) for small amplitude normal mode perturbations. The characteristic
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scales used for the non-dimensionalisation of space, velocity, and pressure in the governing
equations are R,

√
γ/(ρR), and γ/R, respectively, where R is the bubble radius, so that

the validation problem is parameterised by the Ohnesorge number, Oh = µ/
√
ρRγ.

Based on the scaling above, the dimensionless form of the characteristic equation for
the bubble oscillations reads (Prosperetti 1980)[

H(1)

m− 1
2

(X∗)
]
β2 +Oh

[
4m(m+ 2)2 − 2(m+ 2)(2m+ 1)(H(1)

m− 1
2

(X∗) + 2)
]
β

+ (m+ 1)(m− 1)(m+ 2)(H(1)

m− 1
2

(X∗) + 2) = 0, (5.1)

where X∗ is a rescaled growth rate, and H(1)
j (X∗) is a Hankel function of the first kind:

X∗ =

[
β

Oh

] 1
2

, and H(1)
j (X∗) =

X∗H
(1)
j+1(X∗)

H
(1)
j (X∗)

. (5.2)

For a fixed value of Oh, we solve iteratively for β. The initial guess used is the solution
to the following equation (Prosperetti 1980)

β2 − 2Oh [(m+ 2)(2m+ 1)]β + (m+ 1)(m− 1)(m+ 2) = 0. (5.3)

Once the solution for the first eigenvalue is obtained, we use the associated X∗ for the
previous Oh as the initial guess for the next value of Oh. We implemented the solution
steps in MATLAB and generated the analytical solution for 0 6 Oh 6 1.

At steady state, in the absence of gravity and since the liquid surrounding the bubble
is stagnant (u = 0), the governing equations reduce to

∇p = 0, (5.4)

and the normal stress boundary condition to

−p+ Pb = κ on Γb. (5.5)

Equation (5.4) implies that pressure field in the liquid phase surrounding the bubble is
a constant, Pa, so that the bubble pressure becomes

Pb = κ+ Pa on Γb. (5.6)

For the linear stability analysis, the value of Pa was set to zero without loss of generality.
We solve the modified forms of the perturbation equations (4.20)-(4.24) using the base

state solutions computed as set out above. Figures 2a and 2b respectively show excellent
agreement between the real and imaginary parts of the eigenvalues computed and the
analytical solution of (5.1) as a function of the Ohnesorge number for four different
azimuthal wavenumbers.

6. Additional results: stagnant liquids

Here, we provide additional information associated with the flow fields in the other
principal regions around the Taylor bubbles in stagnant liquids, characterised by Um = 0.

6.1. The film region

The features that define the hydrodynamics of the film region are the stabilisation
length Lf , the equilibrium film thickness ∆f , and the velocity profiles in the
fully-developed film. The first two features are crucial parameters as it is expected
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Figure 2: Validation of the theoretical and numerical procedure for an oscillating bubble in
the absence of gravitational and boundary effects. Comparison between the amplification
rates, (a), and oscillation frequencies, (b), from the analytical solution given by (5.1)
(coloured continuous solid line) and our numerically-generated growth rates (coloured
markers), for modes m = 2, 3, 4 and 5.

that the flow pattern in the wake of a Taylor bubble becomes independent of the bubble
length for bubbles of lengths greater than Lf and heavily-dependent on ∆f (Nogueira
et al. 2006). The stabilisation length Lf is determined to be the point at which the radial
velocity component, and the rate of change in the axial velocity component along the
interface are less than 1% of their maximum interfacial values. Figure 3a shows that Lf
increases steeply with Eo before plateauing at high Eo for all values of Nf studied. For
a fixed Eo value, Lf increases with Nf indicating that the film needs to travel a longer
distance below the bubble nose before it becomes fully-developed. However, unlike the
dependence on Nf of the bubble rise speed, or the nose stabilisation length, Lf does
not appear to saturate with increasing Nf . The results, therefore, indicate that as the
viscosity is decreased, it becomes increasingly difficult to obtain a truly fully-developed
film around Taylor bubbles that are not extremely long. Below the developing length in
the film region, the liquid film is deemed to have attained equilibrium, and the thickness
is from there onward constant until the Taylor bubble tail region is approached. The film
thickness at the point where the equilibrium film thickness is first attained is measured
from our numerical predictions and the result is compared with the theoretical prediction
of Brown (1965). From Brown (1965), the equation that relates the equilibrium film
thickness to the bubble rise speed, in dimensionless form, can be written as

4Nf
3Ub

∆3
f + 2∆f − 1 = 0. (6.1)

Using (6.1) together with the expression for Ub

Ub =
0.34

[
1 + (14.793/Eo)

3.06
]−0.58

1 +

(
Nf

[
31.08

(
1 + (29.868/Eo)

1.96
)0.49]−1)Θ−1.0295Θ−1 (6.2)
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Figure 3: Flow characteristics associated with the film region for bubbles rising in
stagnant liquids: stabilisation length Lf and equilibrium film thickness ∆f , depicted in
(a) and (b), respectively, showing a comparison between numerical simulations (coloured
markers) and theoretical prediction using (6.1) and (6.2) (coloured continuous solid line)
for differentNf and Eo; effect of Eo on the axial velocity in the fully-developed film region
uz normalized by Ub with Nf = 40, 100, 160 shown in (c)-(e), respectively; effect of Nf on
uz/Ub with Eo = 20, 140, 260 shown in (f)-(h). In (c)-(h), the numerical simulations are
represented by the coloured markers and the theoretical predictions of (6.4) by coloured
solid lines.

where the parameter Θ is expressed by

Θ = −1.45
[
1 + (24.867 Eo)

9.93
]0.094

,

∆f is computed for different Nf and Eo, and the results are compared with our numerical
prediction in figure 3b. The numerical and theoretical predictions are in good agreement
particularly at higher Nf , as expected, since the thin liquid film assumption becomes
more valid with increasing inverse viscosity number. The decline in the equilibrium film
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thickness with Nf is due to the decrease in the magnitude of the normal stress exerted
on the interface as the fluid viscosity is decreased. It is noteworthy that despite the
apparent dependence of Lf on Eo with increasing Nf , ∆f remains almost constant
beyond Eo = 100.

In order to obtain an approximation of the axial velocity component in the
fully-developed film, uz, the following reduced version of the dimensionless form of
the axial momentum equation in this region is considered (Brown 1965):

1

r

d

dr

[
r
duz
dr

]
= −Nf ; (6.3)

the solution of (6.3) is expressed by

uz = −Nf
[(

0.25− r2

4

)
− 1

2
(0.5−∆f )

2
ln

(
0.5

r

)]
. (6.4)

The predictions from (6.4), scaled using the bubble rise speed and compared to our
numerical results are shown in figures 3c-3e and 3f-3h, which highlight the effect of Nf
and Eo on uz/Ub, respectively. The improvement in the agreement between the numerical
results and the theoretical predictions is noticeable with increasing Eo particularly at
high Nf .

6.2. Hydrodynamic features at the wall and interface

6.2.1. Wall shear stress

From equation the tangential stress interface condition, the shear stress at any
boundary is defined as

τ = n ·T× n. (6.5)

For an axisymmetric boundary, the nonzero component of (6.5) simplifies to

τ = N−1f

[
n · du

ds
+ t · du

dn

]
, (6.6)

which when evaluated at the wall, gives

τw = −N−1f
duz
dr

, (6.7)

where τw denotes the dimensionless wall shear stress. In the fully-developed film region,
using (6.4), τw reads

τw = 0.25− (0.5−∆f )
2
, (6.8)

which is a constant whose dependence on Nf and Eo enters (6.8) through the variation
of ∆f with these parameters via (6.2) and (6.1). A comparison of the predictions of
equation with the numerically computed results for τw using (6.7) is shown in figures
(4a)-(4f). Beyond the limit at which Eo exerts a strong influence on the dynamics of the
bubble, i.e., for Eo & 100, (6.8) adequately predicts the effect of Nf and Eo on τw in
the developed film region. While an increase in Nf leads to a reduction in τw, Eo has
no significant impact on it beyond Eo ∼ 100. Both effects can be related to that of the
parameters on the equilibrium film thickness and its velocity profiles, shown in figures 3b,
(3c)-(3e), and (3f)-(3h), respectively. The apparent peaks observed in figures (4a)-(4c)
and (4d)-(4f) when surface tension effects are strong for small Eo can be related to the
undulation that appears towards the end of the liquid film, with the influence becoming
more pronounced as Nf is increased and Eo decreased. Lastly, the maximum wall shear
stress, τmw , for the combined effect of Nf and Eo, is plotted in figure 4g.
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Figure 4: Shear stress at the wall boundary: effect of Nf with Eo = 20, 140, 260 shown in
(a)-(c), respectively; effect of Eo with Nf = 40, 100, 160 shown in (d)-(f), respectively;
(g) effects of Nf and Eo on the maximum wall shear stress. In (a)-(f), our numerical
results are shown using broken lines and the predictions of (6.8) in the fully-developed
film region using solid lines.

6.2.2. Interface normal stress

From the normal stress interface condition, the normal stress at the interface in the
direction of unit normal to the interface is defined as

σn = −n ·T · n = −
[
−p+ 2N−1f n · du

dn

]
. (6.9)

Expressing the normal stress in terms of the total pressure by adding the gravity term
to the hydrodynamic pressure, the normal stress interface condition becomes

σ∗n = −
[
−pT + 2N−1f n · du

dn

]
= Pb − Eo−1κ, (6.10)
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Figure 5: Normal stress (solid lines) and total pressure (broken lines) at the interface:
effect of Nf with Eo = 20, 140, 260 shown in (a)-(c), respectively; effect of Eo with
Nf = 40, 100, 160 shown in (d)-(f), respectively; (g) effects of Nf and Eo on the maximum
interface normal stress. Panels (c), (e), and (f) show an enlarged view of the curves for
Nf = 160, Eo = 300, and Eo = 300, respectively, for 2.5 6 s 6 3.

where pT = p + z. figures (5a)-(5c) and (5d)-(5f) show the effects of Nf and Eo on the
interface normal stress and total pressure. It is apparent that the normal stress decreases
with Nf and it becomes weakly-dependent on Eo for Eo & 100. In the fully-developed
liquid film region, both the pressure and the normal stress match in order to satisfy
(6.10). This is because in this region, the interface has approximately zero curvature,
and ur = dur/dn = 0, making the viscous stress and the stress due to curvature in the
r − z plane contributions zero. Thus, (6.10) reduces to σ∗n = pT = Pb − Eo−1κb ≈ Pb.
Since the bubble pressure is a constant, the implication of this is that the viscous and
curvature forces are only important in the nose and bottom of the bubble and it is the
interplay between them that determines the shape of these regions. For the observed
sharp peaks in the interface normal stress around the bubble bottom, particularly for
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higher Eo and Nf such as the ones shown in figures 5c, 5e, and 5f, it is clear from figures
6a-6d, the insets shown in these figures that the bubble bottom and the tail regions are
well resolved. In figure 5g, the maximum normal stress, σmn exerted on the interface was
extracted to highlight its dependence on Nf and Eo.

6.3. Hydrodynamic features of bottom region

The features in this region encompass those that define the bottom of the bubble which
are the shape of the bottom and the length of the developing length below the bottom,
and those that define the wake, if present, which are the length of the wake and the
position vector of the vortex eye. We focus here on the shape of the bottom which is
determined from the bottom curvature.

The effects of varying flow conditions on the Taylor bubble bottom shape are
quantitatively examined using the sign of the radius of curvature. Because of the varying
shapes that are associated with bubble bottom, it is more convenient and sufficient
to define the shape of the bubble bottom based on the curvature evaluated at the
bottom along the axis of symmetry. Essentially, a positive (negative) radius of curvature
signifies a convex (concave) bottom shape with respect to the liquid phase. figure 6e
shows the mean radius of curvature Rb for different Nf and varying Eo. It is clear
that Rb becomes independent of Eo for Eo & 100. For Eo < 100, it is seen that Rb
exhibits a non-monotonic dependence on Eo which becomes particularly pronounced
for increasing Nf . The behaviour depicted in figure 6e is reflected in the shape of the
bubble bottom and its dependence on Eo and Nf as illustrated in figures 6f and 6g,
respectively. Inspection of these figures reveals that with increasing Nf and Eo the
bubble tail becomes more pointed. It is possible that for larger values of Nf and Eo
a skirted bubble may form followed by the eventual breakup of the protruding tail
structure into smaller bubbles.

7. Additional results: upward liquid flow

Here, we provide results associated with the case of Taylor bubble motion in upward
liquid flows, characterised by Um > 0. In figure 7a, the numerical simulation results for
upward liquid flow are compared with predictions based on the correlation of Nicklin
et al. (1962) given by

Ub = C1ŪL + C0, (7.1)

with expressions for C0 and C1 provided by Bendiksen (1985) taking into consideration
the effect of Eo as

C0 =
0.486√

2

√
1 + 20

(
1− 6.8

Eo

){
1.− 0.96e−0.0165Eo

1.− 0.52e−0.0165Eo

}
, (7.2)

C1 = 1.145

[
1− 20

Eo

(
1− e−0.0125Eo

)]
. (7.3)

It is evident that (7.1) with (7.2) and (7.3) over-predict the bubble rise speed. This is
because the expressions for C0 and C1 were derived for cases in which flow due to the
bubble motion was considered to be inviscid, an assumption that gains with increasing
Nf . The agreement with the numerical results improves significantly when the correlation
of Viana et al. (2003) is used to calculate C0; this correlation accounts for the effects of
viscosity and surface tension and the agreement improves further with increasing Nf . We
can estimate values for C0 and C1 from our numerical simulations for various Nf and
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(a) (b)

(c) (d)

(e)

(f)

(g)

Figure 6: Flow characteristics of the bottom region for a bubble rising in a stagnant
liquid: shape, (a), and mesh structure, (b), for Nf = 160 and Eo = 300; enlarged views
of the bottom, (c), and tail tip mesh structures, (d); (e) influence of Nf and Eo on the
Taylor bubble bottom radius of curvature Rb; bottom deformation: influence of Eo with
Nf = 160, (f), and influence of Nf for Eo = 300, (g).
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Figure 7: Effect of imposed upward liquid flow speed Um on the bubble rise speed
Ub for varying Nf , (a): comparison between the numerical results (coloured markers),
predictions based on the Nicklin et al. (1962) correlation (7.1) (black solid line) with the
Bendiksen (1985) relations (7.2) and (7.3) used for coefficients C0 and C1, and predictions
using the Viana et al. (2003) correlation for C0 given by (6.2) and the Bendiksen (1985)
relation for C1 expressed by (7.3) (coloured dashed lines); effect of Nf and Eo on the
numerically-generated C0 (normalised by Ub), (b), and C1, (c).

Eo, and the results are shown in figures 7b and 7c, respectively. It is seen that C0/Ub
remains approximately equal to unity over the range of Nf and Eo studied, while C1

increases monotonically with Eo for all Nf considered reaching a plateau at high Eo.

8. Energy balance formulation

8.1. Energy equation

We derive energy equation from the derived normal mode perturbation equations for
the velocity components, (4.20)-(4.22), by setting the test functions for the latter to equal
the complex conjugate of the velocity perturbations, Φ̄r = û∗r , Φ̄θ = û∗θ, Φ̄z = û∗z, followed
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by necessary simplifications:

βR

∫
Ω0

{
|ûr|2 + |ûθ|2 + |ûz|2

}
dΩ0 +

∫
Ω0

{
|ûr|2

∂u0r
∂r0

+ |ûz|2
∂u0z
∂z

+
|ûθ|2 u0r

r

+

(
∂u0r
∂z

+
∂u0z
∂r0

)
R {ûrû∗z}

}
dΩ0 +

∫
Ω

N−1f

{
2

∣∣∣∣∂ûr∂r
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∣∣∣∣∂ûz∂z
∣∣∣∣2
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1
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[(
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)
|ûr|2 +

(
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|ûθ|2 +m2 |ûz|2

]
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∣∣∣∣2
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+
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(
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−
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· û∗

]
+

[
−p0 + 2N−1f

(
t · du

0

ds

)](
t · dû
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b
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∫
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Eo−1κ+ z − P 0

b

] [
(t · û∗) dĥ

ds
+ ĥ

(
im
û∗θ
r

)
+ ĥκ (n · û∗)

]}
dΓ 0

b = 0 (8.1)

where the symbol |.| represents the magnitude of a complex function; R and I denote the
real and imaginary part of a complex function, respectively. Equation (8.1) is the energy
budget formulation that governs the evolution of the disturbance kinetic equation which
following Boomkamp & Miesen (1996), can be expressed as

Ė = REY +DIS + INT, (8.2)

where Ė corresponds to the time range of change of the perturbation kinetic energy given
by the following relation

Ė = βR

∫
Ω0

{
|ûr|2 + |ûθ|2 + |ûz|2

}
dΩ0 ≡ βR KIN, (8.3)

wherein KIN represents the total kinetic energy associated with the perturbation
velocity field, which equals Ė when multiplied by the growth rate βR (which is positive
for an unstable flow). We also introduce the following definitions for the terms REY
and DIS that appear on the right-hand-side of (8.2) (Boomkamp & Miesen 1996):

REY = −
∫
Ω0

{
|ûr|2

∂u0r
∂r0

+ |ûz|2
∂u0z
∂z

+
|ûθ|2 u0r

r
+

(
∂u0r
∂z

+
∂u0z
∂r0

)
R {ûrû∗z}

}
dΩ0,

(8.4)
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DIS =−
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∣∣∣∣2 +

∣∣∣∣∂ûr∂z +
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∂ |ûθ|2

∂r
+

6m

r2
Im {ûrû∗θ}
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r
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(
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+ û∗r
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∂r

)}
dΩ. (8.5)

Here, REY denotes the rate of energy transfer by the “Reynolds stress” (product of
two perturbations anologues to the turbulent Reynolds stress) from the base flow to
the disturbed flow, and DIS represents the rate of viscous dissipation of energy of the
disturbed flow. We also provide a breakdown for INT , the rate of work done by the
velocity and stress disturbances in deforming the interface (Boomkamp & Miesen 1996)
which we have decomposed into its normal, NOR, and tangential, TAN , components
with NOR further subdivided into TEN , HYD, and BUB, representing work done at
the interface against surface tension, gravity, and bubble pressure, respectively.

INT = NOR+ TAN, (8.6a)

NOR = TEN +HYD +BUB, (8.6b)

Expressions for TAN , NOR, and TEN , HYD and BUB, are respectively provided by

TAN =R
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t · dû

∗

ds

)

+

[
−p0 + 2N−1f

u0r
r

](
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, (8.7)
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(8.8)
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, (8.10)

BUB = R
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b

{
P 0
b

[
ĥκ (n · û∗)
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dΓ 0

b

}
. (8.11)
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Furthermore, it is instructive to split TAN into its constituent components based on the
base state groups that supply energy to the perturbations as follow:

TANut = R

{
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∫
Γ 0
b
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u0 · t

) [du0

ds
· û∗

]}
, (8.12a)
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TANpb = R
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(t · û∗) dĥ

ds
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(
im
û∗θ
r

)]
dΓ 0

b

}
. (8.12e)

so that

TAN = TANut + TANstrs + TANts + TANg + TANpb (8.13)

The terms TANut, TANstrs, TANts, TANg and TANpb denote the contributions
to TAN due to streaming tangential velocity, tangential stress, surface tension,
gravity and bubble pressure on the interface as captured by the base state terms

u · t,
[
−p0 + 2N−1f

(
t · du

0

ds

)]
+
[
−p0 + 2N−1f

u0
r

r

]
, Eo, z and Pb in the expressions,

respectively. The base state contribution to TANstrs is related to the tangential stress
because it can be obtained by taking the double dot product of the stress tensor and the
tangential projection operator, (I− n⊗ n).

8.2. Interface energy reformulation

It is also worth asking what would have happened had the classification of the interface
energy terms in our energy equation into TAN or NOR been based on whether the
base state terms that interact with the disturbances are tangential or normal to the
interface (rather than whether the disturbances themselves are tangential or normal to
the interface). In that case, TAN will have only comprised two energy terms (TANut
and TANstrs); the remaining three would have been moved to NOR with TANts, TANg
and TANpb added to TEN , HYD, and BUB, respectively. This implies that the normal
base state terms (surface tension, gravity and bubble pressure) could interact with the
normal or/and tangential disturbance at the interface.

The implication of this re-definition of TAN and NOR on the results is shown in
figures 1-5 below, with figure 1, 2, 3 & 4 (different Um), and 5 corresponding to figures
22, 23, 24, and 25, in the main paper, respectively. These figures show that the dominant
energy term that drives the instability at the onset is HYD for Eo > 20 and switches
TAN for Eo = 20. This mirrors the trend in base state curvature radius versus Eo plot
which indicates the existence of a minimum Eo in the interval [20, 30). In addition, for
Eo > 20, it can be observed that as Um is increased beyond the critical value of Um
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Figure 8: Breakdown of the energy budget for the eigenmode m = 1 as a function of
Um for Eo = 20, 60, 180, and 300, shown in (a)-(d), respectively, with Nf = 80. In each
panel, the vertical dashed line marks the Um value for which βR = 0.

(at which the first instability is observed) there exists a limit of Um beyond which BUB
overtakes HYD as the dominant energy term.
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Figure 9: Breakdown of TAN for the eigenmode m = 1 into its constituent components
as a function of Um for Eo = 20, 60, 180, and 300, shown in (a)-(d), respectively, with
Nf = 80. In each panel, the vertical dashed line marks the Um value for which βR = 0.

(a) (b)

Figure 10: Breakdown of the energy budget, (a), and the TAN constituents, (b), with
Eo, for m = 1 with Nf = 80 and Um = −0.20. The vertical dashed line marks the Eo
value for which βR = 0.
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Figure 11: Breakdown of the energy budget, (a), and the TAN constituents, (b), with
Eo, for m = 1 with Nf = 80 and Um = −0.25. The vertical dashed line marks the Eo
value for which βR = 0.
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Figure 12: Breakdown of the energy budget, (a), and TAN constituents, (b), with Nf ,
for m = 1 with Eo = 300 and Um = −0.25.
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