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1 Analytical Results

1.1 LIS System

Figure S1: Sketch of the system. H stands for the height of channel at which
the shearing velocity V is imposed.Ls,LIS is the total slip length measured
at the surface containg the contributes of Ls,ow, the slip length given by the
interposition of the oil slab, and Ls,int the slip length at the oil-water interface.

Here we report a sketch of the analytical calculations for a Couette two-phase
shear flow at a wall (Fig. S1). These calculations easily allow to express the
contribution of the liquid-liquid interface slip Ls,int to the effective slip length
Ls,LIS of a LIS. In the absence of slip at the oil-water interface, Ls,LIS is related
to the viscosity ratio of the two liquids γ = µw/µo and to the oil slab height ho
through:

Ls,LIS = Ls,ow = γho

A general Couette flow, possibly including liquid-liquid slip, is characterized
by piecewise linear velocity profiles, thus

Velocity in oil: vo(y) = Ay +B

Velocity in water: vw(y) = C(y − ho) +D

with the boundary conditions:

No slip at the solid walls: vo(0) = 0, vw(H) = V

Slip condition at oil-water interface: vw(ho)− vo(ho) = Ls,int
∂vw(ho)

∂y

Stress continuity at the interface: µw
∂vw(ho)

∂y
= µo

∂vo(ho)

∂y
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With these positions, it is possible to derive the coefficients A,B,C and D.
By defining :

α = C =
V

H + Ls,int + ho

(
µw

µo
− 1
)

we can express the velocity profiles as:

vw(y) = γαy

vo(y) = α(y − ho) + (Ls,int + γho)α

The effective slip length now reads:

Ls,LIS = vw(ho)/
∂vw(ho)

∂y
= Ls,int + γho (1)

1.2 Triphase Model

Here we reported the analytical solution for a system (Fig. S2) composed by
two liquid phases with a gaseous phase interposed between them. The purpose
is to find a relation between the slip length Ls and the viscosity ratio of the
liquid and gaseous phases. The system correspond to a zoom of the previous
system on the interface region in the case in which a fully developed layer of gas
is present between the two liquids. Ls corresponds to the quantity previously
called Ls,int. For simplicity and similarity with the systems we simulated, the
two liquid phases are supposed identical, not taking into account the difference
in the viscosities between water and oil.
In the same way we did for the previous system, we define:

Velocity profile for liquid 1: v1(y) = A(y +
D

2
) +B

Velocity profile in the gas slab: vg(y) = C(y +
w

2
) +D

Velocity profile for liquid 2: v2(y) = E(y − w

2
) + F

The boundary conditions:

• No slip at all interfaces:

v1(−D
2

) = 0

v1(−w
2

) = vg(−
w

2
)

vg(
w

2
) = v2(

w

2
)

v2(
D

2
) = V
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Figure S2: Sketch of the three fluids system.

• Continuity of stress:

µl
∂v1(−w2 )

∂y
= µg

∂vg(−w2 )

∂y

µg
∂vg(

w
2 )

∂y
= µl

∂v2(w2 )

∂y

allow to derive the relation:

Ls = (γ − 1)w, γ =
µl
µg

(2)

for the apparent slip length.

2 Simulation Details

2.1 Molecular Dynamics

Shear simulations were carried out for 11 · 106 timesteps, with ∆t = 0.003τ ;
we discarded the first 3 · 106 timesteps and collected statistics in the remaining
ones, printing data every 1000 steps. The data collected were divided into 10
subsets and the average values and the uncertainty have been obtained from a
block averaging procedure [Janke(2002)].

Pressure control was achieved by mechanically forcing the upper wall in the
direction orthogonal to the liquid-liquid interface. In order to ensure rigidity
of the moving wall at each integration timestep, forces on the wall atoms are
first individually computed according to the interatomic interactions, then aver-
aged so that each wall atom experiences the same average force; finally a given
constant force is added to each atom resulting in the desired pressure (this is
implemented in the “fix aveforce” command in LAMMPS).
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2.2 Validation of the simulation protocol

Prior to the adoption of the computational strategy described in the earlier
sections and in the main text several simulation protocols were evaluated. In
particular we made sure that that the thermostat is able to provide precise tem-
perature control while not dramatically influencing the velocity profile induced
by the shear. This is a crucial point in order to obtain reliable estimates of Ls
and to make sure that the measures for the different systems (e.g. at varying
gas concentrations) are consistent to each other.

Our investigation started by considering a simple biphase system, periodic in
the three spatial dimensions. Lees and Edwards boundary conditions[Evans & Morriss(2001),
Lees & Edwards(1972)] were employed in order to induce a shear flow, while
the two liquids were kept at constant temperature by a Nosé-Hoover chains
(NHC) thermostat with a chain length of four and a dampening parameter of
100 timesteps. In this regard two different thermostating protocols were em-
ployed; In the first one the thermostat only acts on the degrees of freedom
that are orthogonal to the shear flow, i.e. in the X and Z directions, whereas,
acccording to the second protocol, the thermostat is set free to control all com-
ponents of the velocity but only after subtracting, at each step, the velocity
profile induced by the shear (For more information on such protocols we re-
fer to [Evans & Morriss(2001)]). The results shown in Fig. S3 display a good
agreement between the velocity profiles obtained using the two protocols.

(a) (b)

Figure S3: a) Comparison between the two velocity profiles obtained using the
thermostat acting on only X and Z degrees of freedom (green squares) and the
thermostat controlling the velocities after subtracting an average velocity profile
at each simulation step (blue circles). b) Comparison between the temperature
profiles obtained using the two thermostats, symbols as in figure (a).

Early simulations, making use the Lees and Edwards boundary conditions to
induce shear, indicated the need for a reliable strategy to control the pressure in
the system, in order to obtain comparable results at various gas concentrations.

For this reason we decided to adopt a non periodic system enclosed by rigid
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walls as a means of inducing the shear flow. In this protocol the bottom wall
remains motionless, while the upper wall moves with prescribed velocity in the
flow direction, while being free to move in the direction orthogonal to the wall
itself. A constant force is then applied in the orthogonal direction in order to
mechanically induce pressure control. Using this simple mechanical route the
pressure of the system was reliably fixed at 0.4 ε

σ3 irrespective of the composition
of the fluid. A NHC thermostat with Nchain = 4 and a damping parameter of
100 timesteps is used to control the temperature of the fluid, by controlling
velocity components that are orthogonal to the shear flow.

Figure S4: Temperature profiles for three fluid compositions: no gas atoms
(green squares), 3600 kgas = 1.0 gas atoms (red triangles) and and 3600
kgas = 0.125 gas atoms (blue circles). A negligible increase of the tempera-
ture is found in the interfacial region, for the first two systems. In the last case,
the temperature increase is more significant, reaching about 6% of the reference
value.

The temperature profiles (as extracted from the fluid velocity components
that are orthogonal the shear flow) for the final system are shown in Fig. S4 for
two extreme cases in terms of concentration of the gas atoms and two values of
kgas = 0.125,kgas = 1.0. The temperature profiles exhibited by the systems are
flat, with slight deviations due to increased heat production in the central region.
As expected the increase in temperature, while not dramatic, is more evident
for the realizations associated to large slip and is inherent in the dynamics of
the interface under shear, reaching a maximum local increase of about 6%. In
conclusion the temperature deviations in the central region, as be observed via
close inspection of the temperature profiles, can be considered minimal and do
not induce large changes in the properties of the fluids, including the velocity
profiles and slip properties.

As a further validation of the thermostating protocol Fig. S5 proposes a
comparison of the slip lengths observed, as a function of the number of third
species atoms, as obtained using the early Lees and Edwards protocol and the
final production runs with full pressure control. Absolute results differ due to
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the dramatically different thermodynamical conditions that are portrayed in the
two sets of simulations, yet the trends observed remain valid in the two cases.

(A) (B)

Figure S5: Comparison between results obtained in the non periodic (A) and
in the periodic systems (B). Trends are comparable, but absolute values are
different due to the higher pressures in the non periodic system.

2.3 Linear Response Regime

As customary in MD simulations of slip, our simulations are computed at rela-
tively large shear rates in order to maintain an acceptable signal to noise ratio.
For this reason it was extremely important for us to ensure that our system is in
the linear response regime, i. e., ensuring that the slip length does not depend
on the imposed shear rate.

In order provide proof that the simulations object of the present work are
indeed in the linear response regime, we performed simulations at different slid-
ing velocities of the wall, for a two liquids system. Results are shown in Fig.
S6.

Figure S6: Dependence of the slip length value on the shear rate. The last point
of the graph correspond to the highest shear rate experienced in our systems.

We also take to opportunity to recall how, as mechanical pressure control
inherently induces small vertical displacements of the walls, whose velocity is
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kept fixed, there will be slight differences in the shear rates among the various
systems object of our investigation characterized by different values of Nth.

2.4 Size of the System

The distance between the two walls has been carefully verified to be appropriate
such that the walls, needed to control the pressure and apply shear, have no
influence on the interface phenomena we aimed to study. This has been carefully
verified by checking the density oscillations due to the layering of the liquid (Fig.
S7). For the same reason, the interactions between walls and third species have
been set to be purely repulsive which avoids unwanted gas accumulation at the
walls.

Figure S7: Total density profile in the region ranging from the bottom wall to
the liquid-liquid interface.

2.5 Calculations of Solubility from Simulations

Calculations for the solubility were carried out for six different values of kgas,
corresponding to six different liquid-third species interactions. The systems
simulated comprised 32000 liquid atoms in a cubic box of dimensions 35.45σ ×
35.45σ × 35.45σ at prescribed temperature and density (T = 1, ρ = 0.718).
Simulations in the NVT ensemble were performed using a Nosé-Hoover chains
thermostat with a chain length of three and a dampening parameter of 100
timesteps, with a timestep ∆t = 0.005τ . The liquid-liquid interaction parame-
ters were set to ε11 = 1 and σ11 = 1.

The solvation free-energy was computed via thermodynamic integration [Kirkwood(1935),
Frenkel & Smit(2001)] by using a soft L-J potential Usoft(λ) to model the solute-
solvent interaction. The soft L-J potential has the functional form

Usoft(λ) =
∑
atoms

4ελn

(
1

(α(1− λ)2 + ( rs )6)2
− 1

α(1− λ)2 + ( rs )6

)
(3)
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with α = 0.5 and n = 2 and a cutoff at rcut = 3.5σ which was not indicated
in the functional form for simplicity. The soft potential allows to continuously
and smoothly interpolate between the case λ = 0 (i.e. no solvent particle is
present) to the case λ = 1 which exactly reproduces the desired L-J interaction
with the solute particle, enabling the calculation of free energies via thermo-
dynamic integration. This special functional form for the soft potential was
proposed by [Beutler et al. (1994)] and it is by now a standard tool in ther-
modynamic integration calculations to avoid discontinuities associated with the
creation/annihilation of the solute atom.

The solvation free energy can now be expressed as the definite integral with
respect to λ over the interval λ ∈ [0, 1] of the ensemble average of the derivative
of the potential energy of the system U = Usoft + Uliq−liq with respect to λ:

∆Gsolv =

∫ 1

0

〈
∂U

∂λ

〉
dλ . (4)

The quantity
〈
∂U
∂λ

〉
was then computed, for several values of λ from the radial

distribution functions g(r) of the liquid with respect to the solute particle via〈
∂U

∂λ

〉
= 4πρ

∫ ∞
0

∂Usoft
∂λ

g(r)r2 dr . (5)

For every value of kgas, in order to carry out the integration in Eq. (4), 32 values
of the λ parameter, uniformly distributed in the interval [0, 1] were considered;
Each of these simulations was carried out for 1.5 ·106 timesteps (timestep=0.005
τ) of which the last 1 · 106 were used to compute radial distribution functions.

2.6 Theoretial estimates for the solubility

We refer to the theory in [Reiss et al.(1960), Wilhelm & Battino (1971)], where
the total solvation energy is expressed as:

∆Gsolv = ∆Gc + ∆Gi (6)

with the two terms on the RHS being the partial Gibbs free energy of cavity
formation and of interaction with the liquid, respectively. These the two terms
can be expressed as:

∆Gc = kBT

{
6

y

1− y

[
2

(
σ12
σ1

)2

−σ12
σ1

]
+18

(
y

1− y

)2[(
σ12
σ1

)2

−σ12
σ1

+
1

4

]
−ln(1−y)

}
(7)

with
y = πσ1ρ/6

and
∆Gi = −3.555πρσ12ε12 , (8)
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where σ1 and σ12 correspond to the σ parameters of the L-J potential for the
liquid-liquid interactions and the inserted particle-liquid interactions, respec-
tively, ρ is the bulk density, T is the temperature, kB the Boltzmann constant,
and ε12 is the energy parameter of the inserted particle-liquid interactions.
In our case, all the σ parameters are fixed; the only changing parameter is ε12,
so our ∆Gsolv must show a linear behaviour of the type:

∆Gsolv = A+Bε12 (9)

where, in our case, ε12 = kgasε11 and ε11 = 1, yielding the theoretical estimate:

A = ∆Gc B = −3.555πρσ12 (10)

3 Viscosities

3.1 Non-equilibrium Calculation of the Viscosities

Viscosity profiles have been calculated using the relation:

µ =
τxz
∂v
∂z

. (11)

The shear stress τxz was obtained by averaging over the shear stress profile
obtained dividing the simulation box in slabs, with a procedure reminiscent to
the one carried out for the reconstruction of the velocity profile. Subsequently,
τxz was divided by the local derivative of the velocity profile ∂V

∂Z in order to
obtain the viscosity profile. In order to estimate the liquid bulk, µbulk, and
interface, µint, viscosities, the profile was averaged over the bulk region and the
interface region defined by Lint, respectively. In Fig. S8 we report the results
for µint and for the viscosity ratio γ = µbulk

µint
for the systems where the gas

layer formed, and compared them to the value expected from the Green-Kubo
calculations (see below). The results exhibit good agreements, in particular
as the gas layer thickens its visosity tends to the values obtained (for a bulk
system) using Green-Kubo formalism (see Sec. 3.2).

3.2 Viscosities from Green-Kubo Calculations

Long equilibrium simulations (6 · 107 MD steps) were used to compute bulk
viscosities from stress autocorrelations using the Green-Kubo formalism. These
simulations were performed in the canonical ensemble using a Langevin ther-
mostat by matching the densities of the equilibrium case during equilibration
and then integrating at constant energy (NVE ensemble) during the production
runs, while using the very same truncated and shifted L-J interatomic poten-
tials that were used in the NEMD simulations. The size of the box was set
to 8192σ3. Initially the system was evolved in the NVT ensemble (using a
Langevin thermostat damping parameter set to 1τ with an elementary timestep
of 0.005τ) until equilibration, after which the production phase was conducted
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(A) (B)

Figure S8: A) Values of the interface viscosity µint obtained by the viscosity
profiles for the systems in the interposed gas layer regime. Red dashed line
stands for the value of viscosity calculated with Green-Kubo calculations for
a bulk of the interposed layer phase. B) Values of the viscosity ratios γ for
the systems in the interposed gas layer regime. Red dashed line stands for the
value of the ratio of the viscosities µbulk and µint obtained from the Green-Kubo
calculations

resorting to NVE dynamics. In particular the case for a pure liquid was equi-
librated at density ρ = 0.718 and T = 1.0ε/kB , 6 · 107 simulation steps were
performed. Correlations were computed after discarding the first 1 · 107 steps
yielding a value of 1.395ετ/σ3 which is compatible with similar results obtained
by [Galliero et al. (2005)].

Similarly, we computed viscosity for a solution with the exact densities for
the various species as found in the gas slab, namely ρ1 = ρ2 = 0.032 and
ρ3 = 0.25, with kgas = 0.125. This simulation resulted in a value of 0.286ετ/σ3

for the viscosity of the mixture. We also conducted a measurement at the
temperature T = 1.06ε/kB in order to gauge the effect of the slight temperature
increase introduced by the shearing at the very center of the gas slab. Using
the compositions ρ1 = ρ2 = 0.042 and ρ3 = 0.23, and sampling for 1 · 106 MD
steps we obtained a value for the viscosity of 0.272ετ/σ3, displaying minimal
deviations from the T = 1.00 results.

4 Radial Distribution Functions

For the above mentioned mixture (ρ1 = ρ2 = 0.032 and ρ3 = 0.25, with kgas =
0.125) we also measured radial density functions for various combinations of
species. From the profiles extremely limited oscillations can be observed just
above the soft repulsion distance.
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r [σ]

0

1

2

3

g(1−2,1−2)(r)

g(3,3)(r)

g(3,1−2)(r)

g(1−2,1−2)(r)

g(1−3,1−3)(r)

Figure S9: Radial density calculations for the mixture ρliq1 = ρliq2 = 0.032 and
ρth = 0.25, with kgas = 0.125).
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5 Stability of the gas layer

5.1 Influence of shear on the fluid density profiles

By simulating the system in static conditions (i.e. without any shear) it is pos-
sible to demonstrate how the shear has no influence on the gas density profiles,
with the third species accumulating at the liquid-liquid interface in both cases.
This finding suggests that the interface structure mainly depends on the static
interaction between the two fluids resulting in a depleted region at the interface
that is preferentially enriched by atoms of the poorly soluble species. This sce-
nario holds also in presence of a fully developed gas layer (Fig. S10), although
the slight increase in temperature due to shear is able to slightly modify the
bulk density of the central region (See .Fig. S11).

Figure S10: Gas and total density profiles for the system with kgas = 0.125 and
3000 gas atoms in static conditions and under shear.

5.2 Stability of the gas layer with respect to pressure in-
crease

The gas layer interposed between the liquids was found to be very stable with
respect to pressure variations: increased pressure conditions do not seem to
preclude the formation of a stable gas layer, which was observed also at the
highest simulated pressures of 0.8ε/σ3. (Fig. S12).
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Figure S11: Average total density profile of the sheared system (blue line) with
3000 gas atoms and kgas = 0.125 as compared to the total density profiles for
the static systems at T = 1 (dashed red line) and T = 1.06 (dashed orange
line) in the region close to the slab. The region between the two static density
profiles is shaded.

Figure S12: (A): Average density profiles for the 36000 atoms and kgas = 0.125
system in static conditions at a large pressure of about 0.8ε/σ3 (i.e. twice
the 0.4ε/σ3 pressure imposed in the shear simulations). (B): snapshot of the
interface.
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