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This document provides supplementary material on the empirical formulas used to de-

scribe the dependence of viscosity and surface tension on solute concentration and tempera-

ture, the method for calculating the rescaled cross-sectional-averaged dimensionless velocities

w̄i, as well as the dimensionless parameter values used when comparing model predictions

to experimental observations by Lade et al. (2018) in the primary article “Evaporating flow

of liquid solutions in open rectangular microchannels”.

S1 Constitutive equations for viscosity and surface ten-

sion

The constitutive equations for viscosity M and surface tension Σ depend on the liquid

solution we choose to study. In this work, we use aqueous poly(vinyl alcohol) (PVA) solutions

and compare model predictions to capillary-flow experiments conducted by Lade et al. (2018).

An empirical model proposed by Patton (1964) is used to capture the dependence of viscosity

on T̄ and c̄ through

logM =
c̄

ka(T̄ ) + c̄kb(T̄ )
, where

ka(T̄ ) = 1.28× 10−5(T̂V + T̄∆T̂ ) + 1.59× 10−2,

kb(T̄ ) = 3.83× 10−4(T̂V + T̄∆T̂ )− 2.47× 10−2.
(S1)

The ka(T̄ ) and kb(T̄ ) functions were reported by Lade et al. (2018) after fitting the empirical

model to rheological data of PVA solutions for a range of temperatures and concentrations. In

(S1), increasing the solute concentration can increase the viscosity by orders of magnitude,

and increasing the temperature decreases the viscosity but does not change its order of

magnitude. Similar models can be used to describe any solution or colloidal suspension

where the shear viscosity is the dominant rheological parameter.
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The effects of T̄ and c̄ on the surface tension are modeled using

Σ = 1−Macc̄
1/2 −MaT T̄ , (S2)

where Mac = γ̂cε/µ̂0Û is the solutal Marangoni number and MaT = γ̂T∆T̂ ε/µ̂0Û is the

thermal Marangoni number, which are ratios of surface-tension-gradient forces to viscous

forces, and γ̂c and γ̂T are experimentally obtained constants. We assume the temperature

at the liquid-air interface does not deviate much from the vapor temperature, which allows

us to write the surface tension as a linear function of T̄ (Ajaev, 2005; Burelbach et al., 1988;

Craster et al., 2009; Gramlich et al., 2002). Many prior studies assume a dilute solution and

use a linearized surface-tension dependence on the concentration (e.g., Lam & Benson (1970);

Pham et al. (2017)); this would yield results that are qualitatively similar to those obtained

using (S2). Comparison of the empirical models in (S1) and (S2) to the experimental results

of Lade et al. (2018) is found in figure S1.

(a) (b)

Figure S1: (a) Dimensionless viscosity M and (b) dimensionless surface tension Σ as a

function of PVA concentration c̄. Symbols represent experimental measurements by Lade

et al. (2018) and dashed lines respresent model predictions using (S1) and (S2), respectively.

S2 Velocity Field

Here, we describe the method for calculating cross-sectional-averaged dimensionless velocities

Ū c
i (A) and Ū g

i (A) seen in (2.29), with the subscript i being equal to D,R, T, or C for

the meniscus-deformation, meniscus-recession, corner-transition, and corner-flow regimes,
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respectively. The axial velocity w can be decomposed to two parts w = wc +wg, since (2.4)

is linear in w, where wc and wg satisfy the following equations

pz = M(wc
xx + wc

yy), (S3a)

0 = wg
xx + wg

yy, (S3b)

with boundary conditions

wc = 0, wg = 0 at solid boundaries (S4a)

wc
y − hxwc

x = 0, M(wg
y − hxwg

x) = Σz at free surface. (S4b)

Here, wc is the contribution from the capillary-pressure gradient and wg is the contribution

from the Marangoni stresses.

S2.1 Meniscus-deformation and meniscus-recession regimes

To calculate Ū c
i and Ū g

i (where i = D,R) we rescale the velocities wc and wg as follows

wc = − pz
M
w̃c and wg =

Σz

M
w̃g. (S5)

The rescaled velocities w̃c and w̃g then satisfy the following systems

w̃c
xx + w̃c

yy = −1, w̃c = 0 at solid boundaries, w̃c
y − hxw̃c

x = 0 at free surface, (S6)

and

w̃g
xx + w̃g

yy = 0, w̃g = 0 at solid boundaries, w̃g
y − hxw̃g

x = 1 at free surface, (S7)

where h is given in (2.6) for each regime. The cross-sectional-averaged dimensionless veloci-

ties Ū c
i and Ū g

i are defined as

Ū c
i =

1

A

∫
A

w̃c dA and Ū g
i =

1

A

∫
A

w̃g dA, for i = D,R (S8)

where A is given in (2.6). Note that the dependence of Ū c
i (A) and Ū g

i (A) on A is obtained

by varying the contact angle θ ∈ [π/2, θ0] for i = D, and the liquid height on the side walls

a ∈ [1,Wλc] for i = R to create different cross sections characterized by h.
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S2.2 Corner-transition and corner-flow regimes

To calculate Ū c
i and Ū g

i (where i = T,C) we rescale the velocities wc and wg and the

coordinates as follows

x = ax̃, y = aỹ, h = ah̃ wc = −a2 pz
M
w̃c, wg = −aΣz

M
w̃g. (S9)

The rescaled velocities w̃c and w̃g then satisfy the following systems

w̃c
x̃x̃ + w̃c

ỹỹ = −1, w̃c = 0 at solid boundaries, w̃c
ỹ − h̃x̃w̃c

x̃ = 0 at free surface, (S10)

and

w̃g
x̃x̃ + w̃g

ỹỹ = 0, w̃g = 0 at solid boundaries, w̃g
ỹ − h̃x̃w̃

g
x̃ = 1 at free surface, (S11)

where h̃ = h/a, and h is given in (2.6) for each regime. The cross-sectional-averaged dimen-

sionless velocities Ū c
i and Ū g

i are defined as

Ū c
i =

1

Ã

∫
Ã

w̃c dÃ and Ū g
i =

1

Ã

∫
Ã

w̃g dÃ, for i = T,C (S12)

where Ã = A/a2, and A is given in (2.6). Note that the dependence of Ū c
T (A) and Ū g

T (A)

on A is obtained by varying the contact angle θ ∈ [θT , θ0] to create different cross sections

characterized by h. Because the rescaled cross-sectional area Ã = B(θ0, θ0)/(cos θ0− sin θ0)
2

for the corner-flow regime, (S10) only needs to be solved once to obtain Ū c
C(A) and Ū g

C(A)

for a given θ0.

S3 Comparison to Experiments

The dimensionless parameter values used in figure 15 to compare model predictions to ex-

perimental observations by Lade et al. (2018) are shown in table S1.
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Table S1: Parameter values used in figure 15.

λ 0.94 0.94 0.23 0.23

RH 0.45 0.80 0.45 0.80

ε 1.6× 10−3 1.6× 10−3 1.6× 10−3 1.6× 10−3

λR 0.031 0.031 0.031 0.031

fR 0.21 0.21 0.85 0.85

K 10.57 5.96 16.01 9.75

δ 1.58× 10−5 8.87× 10−5 1.58× 10−5 8.87× 10−5

Pe 4.03× 106 4.03× 106 4.03× 106 4.03× 106

E 0.323 0.059 0.323 0.059

MaT 1.81× 10−2 3.33× 10−3 1.81× 10−2 3.33× 10−3

Mac 0.54 0.54 0.54 0.54

αE 5.0× 10−3 5.4× 10−3 3.3× 10−3 3.3× 10−3

C0 0.03 0.03 0.03 0.03

θ0 24.9 24.9 24.9 24.9
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S4 Thermal accommodation coefficient αE

Figure S2a demonstrates the effect of αE on the meniscus and finger tip evolution. Increasing

αE increases the evaporation rate, leading to longer flow distances. As alluded to in §4.2,

the maximum meniscus and finger tip flow distances scale as ∼ ĵ−1/2. Since, ĵ ∼ αE from

(2.9), it follows that the maximum meniscus and finger tip flow distances scale as ∼ α
−1/2
E ,

which is confirmed in figure S2b.

(a)
(b)

Figure S2: Effect of accomodation coefficient αE on (a) evolution of meniscus position zM and

finger tip position zT , and (b) maximum meniscus and finger tip position. Unless denoted

otherwise, the parameter values are θ0 = 24.9◦ (λc = 0.32), ε = 1.6 × 10−3, fR = 0.21,

RH = 0.45, E = 0.323, Mac = 0.54, MaT = 1.81×10−2, K = 52.84 (αE = 10−3), K = 10.57

(αE = 5×10−3), K = 5.28 (αE = 10−2), δ = 1.58×10−5, αE = 5×10−3, and Pe = 4.03×106.
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