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For a single horizontal helical vortex of infinite extent in the unbounded ideal fluid, the
translation speed Uy and rotational speed €2y due to self-induction are given by
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where Jy = A2 +2a?(1 — cos A) + (ae,)? and e, = epe™**. The corresponding components of
the self-induced velocity in FrenetSerret frame {T', N, B} take the form

Uy + a*Qy a
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indicating that the single helical vortex does not possess any self-induced motion in the
normal direction IN. In following contexts, we first drive the asymptotic behaviors of Uy and
)y for both small and large a cases, and then show the inequality Ug > 0.

1 Asymptotic analysis of Uj; and ()

First, we analyze the behavior of integral f(a,e,) fo —cosA)Jy %24\ when e, — 0. For

any fixed 0 € (0,1), we split f into two parts f; = fo and f, = [;°. For small A, we have
following expansions

Jo =N+ a*\ +a’e? + O0(\), 1—rcosA=\/2+0(\). (3)
Using these small \ expansions, we obtain
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where v = e,(1 + a~2)71/2 < 1, and o(1) represents the terms that tend to 0 as e, — 0.
As for f5, since the integrand is not singular when e, — 0, we have

fo= /500(1 — cos ) [A* + 2a*(1 — cos )\)]_3/2 dA +o(1). (5)

When A — 0, we have (1 —cos \) [A\? + 2a*(1 — cos /\)]_3/2 = (14a?)~%2/(2X) +O()). Using
this small A expansion, we have
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in which H(z) denotes the unit step function, and function W (z) is defined as

_ > sin?t 1 H(1/2 . t)
W(z) —/0 { (2242 4 sin? t)3/2 T (1t a2)32 . }dt. (7)

Combining the results of fi, fo and letting 6 — 0, we obtain
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f = m |:111 (e_,,,) + 5111(1 + CL_Q) -1 + 2_a3W(CL_1) + 0(1), €r — 0 (8)

The asymptotic behaviors of W (x) for small and large = have been studied in [1]. They are
expressed in the form

Wi(x)=(3/2—7)z % +0(x"), T — 00, (9)
W(z)=a 4+ 1 +22)7321n(z/2) + 1+ O(z?), x — 0, (10)

where v ~ 0.577 is the Euler constant. Using above formulae, after some algebraic manipu-
lations, the asymptotic solutions of f(a,e,) are obtained to be given by
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The asymptotic solutions of translation velocity Uy = a?f take the form
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For rotational velocity g, since 2(1—cos A)—Asin A = O(\?) as A — 0, there is no singularity
in f 4+ Qg when e, = 0. Specifically, we have
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Therefore, the asymptotic solutions of €2y are
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2 Proof of inequality U > 0

In this section, we introduce § for simplicity in expressions by letting a = tan [, where

B e (0,7/2).

Lemma 1. For 0 <e, <1, we have Ur < Ur(e, = 0) = cos (1 — cos 5)

Proof. When e, = 0 we obtain from formula (15) that Uy+a?Q = 1—(1+a?)"/2 = 1—cos 3,
and then Ur(e, = 0) = cos (1 — cos ). When e, > 0, considering that

Jo < (14 a*)\? + a*e?, % [)\Jo_lﬂ} =a’[2(1 — cos\) — Asin A + €7] J0_3/2, (18)

we have
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Therefore, the inequality Ur < Ur(e, = 0) = cos B(1 — cos §) must hold. O

Lemma 2. 1 — sin SK;(sin 8) > cos 5 (1 — cos ) holds for all € (0,7/2), where Ky(x) is
the modified Bessel function.



Proof. For arbitrary z € (0,1), we have [2]:
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where 1)(z) is the digamma function that satisfies ¢)(n+1) = >",_, k~' —~ for n € N. Then
we have:

Ki(2) < é +2mn (2) - ) + (@) - % +im(Z)-T0-2), 22
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Therefore, by inequality (23), we only need to prove that
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1 [1— 27+ In4 — In(sin® 8)] sin* B > cos 3 (1 — cos 3)
4cos 8
<1 -2y +In4 > In(sin’ — 24
Y+ hugsin ) + 207 (24)
For function f(z) =1In(1 — 2?) + 4z /(1 + x), its maximum on interval (0,1) is
17-3
Jiax = f(\/_T) ~1.06<123~1—2y+1In4. (25)
Therefore, inequality (24) holds for all 5 € (0,7/2) and the lemma is then proved. O
Theorem 1. Bi-normal velocity Ug > 0 and Uy > .
Proof. By Basset’s integral [2]
*  cost
Using this and the fact Jy < (1 + a*)A? + a?, we have
Us :/ 2(1 = cos A)Jy *2dN > / (1 = cos A) [(1+ a®)A2 +a2] "% dA
0 0
= cos 3 [1 — sin 3 - K (sin 8)] > cos? B(1 — cos f3), (27)

where the last step is based on lemma 2. Also, by inequality (19), we have
Qo <a?(1—cosf—Up) < tan 2 B(1 — cos B)(1 — cos? B) = (1 — cos ) cos? 3. (28)

Therefore, the result of Uy > (1—cos 3) cos® 3 > Qg holds for any helical vortex filament. [J
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