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7 Appendix

This material is provided to supplement the material found in the Appendix found in the
above article. More precisely, the details of the contour integration required to evaluate
the steady state solutions are given here. The methods used follow closely the work in
Davys et al. and Schulkes & Sneyd in Chapter 5 of Squire et al. (1996).

7.3 The initial condition

The results in Miles and Sneyd (2003) envisage loads started impulsively at time t = 0,
but for loads initially moving at constant speed V the Fourier transform of the deflection
becomes

−tanh kH

k

[
cos kct− iV

c
sin kct

c2 − V 2
+
k

c

∫ t

0

e−ikX(τ) sin kc(t− τ) dτ

]
. (A.1)

The first term is the Fourier transform at time t of the component of the deflection
due to the evolution of the initial condition and the second term is the Fourier transform
of the component of the deflection at time t due to the moving load at the position X(t).
Since the second term has no poles on the real k axes for the class of load positions X(t)
considered in this article, the discrete inverse Fourier transform can be applied directly
to obtain an approximation to its inverse Fourier transform. The first term has poles on
the real k axes at points where c2 − V 2 = 0 and consequently for V > cmin the discrete
Fourier transform can not be applied directly. However, this term can be re-written in
the form
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The term within the outside square brackets is regular on the real k axis so that the inverse
Fourier transform of the corresponding expression can be approximated using the discrete
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inverse Fourier transform. The inverse Fourier transform of the last term (the steadily
moving load contribution) can be evaluated analytically using the method of residues.

The contour of integration is taken to be the real axis from −R to R, where R > 0
and sufficiently large, together with the semi-circle ΓR : z = Reiθ where 0 ≤ θ ≤ π if
x− V t > 0 and 0 ≥ θ ≥ −π if x− V t < 0. The poles are computed numerically and can
be obtained by noting that
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and writing the denominator in the form
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There are two sets of poles. The first set is made up of poles that are purely imaginary
and can be obtained by setting k = iκ and writing(
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where it can be seen that the poles (the zeros of the above equation) depend on the Froude
number Fr = V/

√
gH. Since the expression
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is even in κ, it is sufficient to consider κ ≥ 0. For κ ≥ 0 the function Fr2/(1 + D
ρg
κ4)

decreases from Fr2 to zero as κ increases to infinity and the function tanκH/κH increases
from 1 to infinity on the interval J0 = (κH : 0 ≤ κH < π

2
) and increases from minus

infinity to infinity on the the intervals Jn = (κH : π
2
(2n − 1) < κH < π

2
(2n + 1)) for

n = 1, 2, ... . Consequently, for Fr2 > 1 there is a simple pole κn in each of the intervals
Jn. For Fr2 < 1, there are no poles in the interval J0. For Fr2 = 1 (i.e. when V =

√
gH),

there is a double pole at k = κ0 = 0. The poles in the second set are complex for V < cmin.
Two of the poles kL and −k̄L are in the lower half plane and two of the poles kU and
−k̄U are in the upper half plane. As V → cmin, the poles approach the real k axis until
at V = cmin the imaginary parts of kL and kU become zero and kL=kU . For V = cmin

they become double poles, so the deflection for the constant speed V = cmin (the critical
speed) is predicted to grow without bound as t increases. For cmin < V <

√
gH, the

poles ±kL and ±kU are simple poles on the real k axis. For V >
√
gH, there are only

two real poles ±kU . The artifact attributed to Lighthill (cf. Lighthill (1957, 1978)) moves
the real poles off the real axis and so attributes their contribution to the appropriate half
plane by introducing an artificial time dependence, where the load is zero in the distant
past and grows to p0 at time t. For V > cmin, this artifact treats the poles ±kU as if
they were in the upper half plane (see also Davys et al. and Schulkes & Sneyd discussed
in Chapter 5 of Squire et al. (1996)); and for cmin < V <

√
gH it treats the poles ±kL as

if they were in the lower half plane.
Noting that the contribution to the contour integration along the path ΓR goes to zero

as R→∞, the steady deflection moving with speed V is given by
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where Π is the set of poles within the contour which in this case is either the lower or
upper half plane.

Written in the frame moving with the load, we have
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Figure 1: Steady state deflections at the constant subcritical and supercritical speeds
consistent with the three limiting results produced in Section 3 for the Takizawa data.
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