Swinging and tumbling of multicomponent vesicles in flow – Supplementary materials

Prerna Gera¹, David Salac², and Saverio Spagnolie^{1,3}

¹ Department of Mathematics, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA

² Department of Mechanical Engineering, University of Buffalo, Buffalo, NY, USA

³ Department of Chemical & Biological Engineering,

University of Wisconsin-Madison, Madison, WI 53711, USA

I. MOVIE CAPTIONS

- Movie M1: Vesicle dynamics with bending stiffness variation in spatial mode M=2. Beyond a critical magnitude of variation the elongated axis transitions from swinging to tumbling.
- Movie M2: As in Movie M1, but with a smaller enclosed area.
- Movie M3: As in Movies M1-M2, with yet smaller enclosed area.
- Movie M4: Vesicles in a shear flow with different spatial modes of material property variation. The M=2 mode most strongly interacts with the deformation imposed by the background shear flow. The magnitude of the variation is just large enough for the case with two domains (M=2) to tumble.
- Movie M5: As in Movie M3, but with increased variation in the bending stiffnesses. The swinging amplitudes of vesicles with even numbers of domains (M even) are increasing.
- Movie M6: As in Movies M1-M2, with yet smaller enclosed area.

Movie	Mode(s)	ε	$\bar{\kappa} \mathcal{C}^{-1}$
M1	2	0.05	$\{0.3, 0.87, 0.871, 2\}$
M2	2	0.1	$\{0.3, 0.698, 0.699, 2\}$
M3	2	0.15	$\{0.3,0.7,1,2\}$
M4	$\{1,2,,8\}$	0.1	0.75
M5	$\{1,2,,8\}$	0.1	2
M6	$\{1,2,,8\}$	0.1	4

II. MOVIE PARAMETERS

III. DESCRIPTION OF MOVIES M1-M3

Visualizations of the different types of observed dynamics. Let $(\varepsilon, \bar{\kappa}C^{-1})$ denote the amount of deformation and the variation in the bending rigidity. The results can be grouped thusly:

- Swinging: (0.05, 0.3), (0.05, 0.87), (0.1, 0.3), (0.1, 0.698)
- Phase-Lagging: (0.05, 0.871), (0.1, 0.699), (0.15, 0.7), (0.15, 1)

The systems (0.05, 0.87) and (0.1, 0.698) are just below the critical $\bar{\kappa}C^{-1}$ value required for tumbling, while (0.05, 0.871) and (0.1, 0.699) are just above it. Just below the critical $\bar{\kappa}C^{-1}$ value the tip of the vesicle dips below horizontal but does not continue due to the phase-lagging of the high-bending rigidity region (in red). Just above

the critical value the vesicle begins to tumble, with the surface domains sliding between the tip and the edge, never making a full rotation around the permiter. As $\bar{\kappa}C^{-1}$ further increases the high-bending rigidity regions become locked away from the tips due to the large bending energy.

IV. DESCRIPTION OF MOVIES M4-M6

Visualization of how the mode (the number of domains) influences the dynamics of a vesicle with $\varepsilon = 0.1$ for Movie M4: $\bar{\kappa}C^{-1} = 0.7$, Movie M5: $\bar{\kappa}C^{-1} = 2$, and Movie M6: $\bar{\kappa}C^{-1} = 4$. A value of $\bar{\kappa}C^{-1} = 0.7$ is just larger than the critical value necessary for the mode-2 vesicle to tumble, see Movie M2. In general only even modes are observed to tumble, with higher modes requiring a higher bending rigidity difference. Due to the non-symmetric nature of the odd modes, the membrane deformation is no longer symmetric.