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1. Validation of DNS of air turbulent Couette flow for the initialization of5
wind-wave generation simulation6

Before conducting simulations of the coupled air–water system, we first simulate a fully7
developed turbulent Couette airflow by enforcing the air–water interface as a stationary8
non-slip boundary. In this section, we validate the DNS of turbulent Couette airflow. To9
confirm that the turbulent Couette airflow reaches a statistically steady state, we examine the10
momentum conservation equation:11

dD̄+

dI+
− 〈D′F′〉+ = 1, (1.1)12

where D̄ denotes the mean streamwise velocity, D′ and F′ denote streamwise and vertical13
velocity fluctuations, respectively, and the superscript ‘+’ denotes normalisation in wall units14
with air kinematic viscosity a0 and air friction velocity D0g . In (1.1), dD̄+/dI+ represents15
the dimensionless mean viscous shear stress and −〈D′F′〉+ represents the dimensionless16
Reynolds shear stress. The summation of mean viscous shear stress and Reynolds shear17
stress is constant with vertical height in a statistically steady Couette flow. Figure 1 shows18
the plot of vertical profiles of the dimensionless mean vertical turbulent flux, mean viscous19
flux, and their sum. The data used to compute the plane and time averaging contains 90020
different time snapshots. The sum is overall constant with height. The maximum deviation21
of the sum term from 1 is 0.25%, which indicates that the turbulent airflow has reached a22
quasi-steady state. The dashed lines ( ) in figure 1 illustrate instantaneous plane averaged23
Reynolds shear stress at the beginning of each independent simulations in the ensemble case24
(Group I). The variations among different cases indicate the unsteady and irregular nature25
of turbulent flows and imply the necessity to perform ensemble simulations to study the26
early-stage wind-wave generation problem.27

We calculate the mean streamwise velocity, D̄+, and root mean squares of velocity28
fluctuations, D′+A<B, E′+A<B, and F′+A<B in wall units, as plotted in figure 2. Our DNS results29
agree with other numerical and experimental studies of turbulent channel flows and Couette30
flows in literature. The viscous sublayer, where D̄+ = I+, and the logarithmic layer, where31
D̄+ = (1/0.41) ln( Ī+) + 5.2, are shown in figure 2(a). Although the mean velocity profiles32
exhibit a similarity for the turbulent channel flows and Couette flow, the streamwise velocity33
fluctuation decays much faster to the centerline in the channel flows than in the Couette34
flows (Debusschere & Rutland 1997). Therefore, as discussed in Yang & Shen (2017), only35
velocity fluctuations ofCouette flows in the literature are plotted in figure 2(b) for comparison.36

2. Diagnostic function for determining exponential growth of surface elevation37
variance38

In this section, we analyse the temporal growth behavior of the ensemble average of surface39
elevation variance E[〈[2〉] for CD0g/� > 50. Figure 3(a) shows the evolution of E[〈[2〉]40
in the late phase of our simulation. In figure 3(a), the G-axis and H-axis are the normal41
scale and logarithmic scale, respectively, and the straight line shown in figure 3(a) indicates42
an exponential function, i.e., E[〈[2〉] (C) ∼ W1 exp(W2C) where W1 and W2 are constants. To43
further investigate the similarity between the temporal growth of surface elevation variance44
and an exponential function, we examine the property of its first-order derivative. For any45
exponential function, the ratio between its first derivative and itself is constant. Thus, we46
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Figure 1: Profiles of Reynolds shear stress and mean viscous stress normalised in wall units: , Reynolds
shear stress −〈D′F′〉+; , Reynolds shear stress −〈D′F′〉+ at CD0g/� = 0 for different realizations in the
ensemble simulations (Group I); , mean viscous stress dD̄+/dI+; , total stress −〈D′F′〉+ + dD̄+/dI+.
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Figure 2: Profiles of (a) mean streamwise velocity D̄+ ( ) and (b) root-mean-square velocity fluctuations
(D′+A<B , ; E′+A<B , ; F′+A<B , ) normalised by the friction velocity in the air domain when the flat
air–water interface is enforced to be a no-slip boundary. DNS data are plotted by dashed lines for comparison:

, channel flow at Reg = 180 from Kim, Moin & Moser (1987); , channel flow at Reg = 590 from
Moser, Kim & Mansour (1999); , Couette flow at Reg = 120 from Sullivan et al. (2000); , Couette
flow at Reg = 157 from Papavassiliou & Hanratty (1997). Experimental data are plotted by symbols for
comparison: ^, channel flow at Reg = 142 from Eckelmann (1974), which is rescaled by Kim et al. (1987);
�, channel flow at Reg = 1000 from Schultz & Flack (2013); 4, Couette flow at Reg = 434 from El Telbany
& Reynolds (1982); ◦, Couette flow at Reg = 269 from Aydin & Leutheusser (1991). Dashed lines ( )
in (a) denote D̄+ = I+ in the viscous sublayer and D̄+ = (1/0.41) ln(I+) + 5.2 in the logarithmic layer,
respectively.

define a diagnostic function �3(C) as47

�3(C) = (
(

Dt E[〈[2〉]
E[〈[2〉]

)
, (2.1)

where Dt is the finite difference operator of the first derivative, and ( is the Savitzky–Golay48
filter for data smoothing. Theoretically, if the surface elevation variance grows exponentially49
with time, the diagnostic function �3 is constant. As shown in figure 3(b), the diagnostic50
function �3 overall varies slightly between 3.5 and 4.5 and has a plateau in the range51
CD0g/� ∈ [55, 65]. The behaviour of diagnostic function �3(C) further confirms that in the52
present DNS, the surface elevation variance grows exponentially with time in the late phase.53
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Figure 3: (a) Temporal evolution of surface elevation variance, normalised by the domain height �. (b)
Temporal evolution of diagnostic function �3 defined in equation (2.1).

3. Discussion on effects of modelling random sweeping variance term on wave54
growth behaviours55

In this section, we discuss the alternative modelling of the variance term k�kT, which is56
equation (4.26) in the main text. The leading order approximation of k�kT is57

k�kT = (:2
G + �:2

H)+2
? , (3.1)5859

where � is a constant. In the present study, the constant � is set to be 0.41 for modelling the60
wavenumber–frequency spectrum (Wilczek, Stevens & Meneveau 2015). We note that the61
choice of� value is not based on analytical derivations. Here we discuss the effect of constant62
� on thewave growth behaviours in the principal stage. Specifically,we analyse anothermodel63
of which � is set to be 0. This alternative model can be treated as a simplification of our64
model proposed in the main text. We denote the model of which � = 0.41 as Model 1, and65
the alternative model of which � = 0 as Model 2. Thus, we have the following expressions:66

Model 1 : |k · \ | =
√
:2
G + 0.41:2

H+? (3.2)

Model 2 : |k · \ | = :G+? (3.3)

The expected value of wave energy spectrum is obtained as:67

E[Ψ
∧

[] (k, C) =
√

2c:2Π
∧

? (k, 0)C
4dF2Λ2 |k ·\ |

(
exp

(
− (k ·[−Λ)

2

2(k ·\)2

)
+exp

(
− (k ·[+Λ)

2

2(k ·\)2

))
, (3.4)

68

We calculate the time-dependent norm of wave energy spectrum, ‖Ψ̂[ (k)‖-1
C
, defined in69

equation (5.5) in the main text, for both Model 1 and Model 2 and compare them with the70
DNS results in figure 4. Model 1 has better agreements with DNS in the low-:G and high-:H71
regime of the wavenumber space than Model 2 does. In the low-:H regime, the discrepancy72
betweenModel 1 andModel 2 is insignificant. We further show comparisons of wave growth73
in the principal stage among DNS results, Model 1 and Model 2 in figure 5. The variations of74
the upper bound and lower bound of wave linear growth rate between Model 1 and Model 275
are insignificant for both gravity–capillary waves and gravity waves. The maximum relative76
variation is 8% in the present DNS study. The choice of constant � does not significantly77
alter the modelling of the overall wave growth rate. A simple and intuitive explanation can78
be obtained by considering the wave energy spectrum as a continuous function of � while79
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Figure 4: Comparisons of the -1
C norm of the wave energy spectra ‖Ψ̂[ ‖-1

C
in the principal stage among the

DNS results, Model 1, and Model 2.

keeping other variables fixed. Therefore, the wave energy spectrum function E[Ψ
∧

[] (see80
equation (3.4)) can be rewritten as81

E[Ψ
∧

[] (�) =
V1
|k ·\ |

(
exp

(
− V2

(k ·\)2

)
+exp

(
− V3

(k ·\)2

))
, (3.5)

where V1, V2, and V3 are independent of�, and |k ·\ | =
√
:2
G + �:2

H+?. The first term on the82

right-hand side of (3.5), V1/|k ·\ |, is a monotonic decreasing function with respect to �, but83
the second term on the right-hand side of (3.5), exp(−V2/(k · \)2) + exp(−V3/(k ·\)2, is a84
monotonic increasing function with respect to �. As a result, when � changes, the variation85

of E[Ψ
∧

[] is not significant.86
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Figure 5: Comparisons of wave growth in the principal stage among the DNS results, Model 1, and Model 2
for gravity–capillary waves and gravity waves. The orange lines represent the superresolution cases (Group
II). The blue lines denote the average of the ensemble cases (Group I), with the light blue shaded area being
the range bounded by one standard deviation of the ensemble data. The purple and green shaded areas show
the surface elevation variance predictions by the present model (Model 1 and Model 2) and the Phillips
model, respectively.
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