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Supplementary Materials B: molecular and
numerical dissipation in root-mean-square

budgets

As mentioned in Section 4.3, we have observed non-negligible levels of spurious nu-
merical dissipation with the CFD solver that we have retained for the study, i.e., the
parallel code AVBP (Schonfeld & Rudgyard 1999; Moureau et al. 2005), which employs
a time-explicit finite-element two-step Taylor-Galerkin scheme (Colin & Rudgyard 2000)
which provides third-order accuracy in space and time.

AVBP is commonly used for unstructured meshes on very complex industrial appli-
cations. The numerical scheme relies on a distributed-residual scheme in a cell-vertex
approach, which is less-widespread and makes delicate the computation of the different
terms in the various root-mean-square budgets. Furthermore, since we have preferred
to post-treat the different terms with standard spatial discretisation on the structured
grid, our post-processing includes a possible discretisation error with the actual terms
seen by the numerical scheme. These errors lead to an underestimated level of molecular
dissipation, and yield unclosed root-mean-square balances. We have observed this issue

on both budgets of enthalpy h̃′′h′′ and turbulent kinetic energy k, and we have further
investigated. As we explain hereinafter, we have identified that the molecular dissipation
could be safely estimated as the complementary term to all the others, so that the sum
of all terms gives exactly zero, yielding a closed balance.

We have performed the DNS of an adiabatic 2πδ channel flow at Reτ = 180 with
two meshes. The former has similar resolution to the one used in our work, and in
agreement with the usual resolutions of the literature, in particular Kawamura et al.
(2000); we will call it M1. The latter, instead, has been extremely (and excessively)
refined: 256 × 192 × 256 points in the streamwise, wall-normal and spanwise directions,
respectively, for a total of ∼ 12.5M nodes; we will call it M2. More information is given
in table 1.

We have extracted the budgets of k in both cases, and obtained the results shown
in figure 1. As one can see, M1 does not allow us to close the balance when each term
is computed according to its definition. With M2, the balance is, on the other hand,
perfectly closed. Observe that the only term which strongly varies between the two is the
computed dissipation; other than that, there are negligible discrepancies near the wall
for the molecular diffusion and near the peak for the production. Hence, the imbalance
seen with M1 is largely retrieved within the molecular dissipation computed on M2. This
proves that our problem is due to the computed molecular dissipation which (i) can be
degraded in our post-processing of the cell-vertex scheme and (ii) should be augmented
with the residual numerical dissipation.

Since the resolution of M2 would be infeasible in our simulation’s domain (which, recall,
is 22πδ-long in the streamwise direction), we have retained a pragmatic determination of
dissipation in the present study: we have added the imbalance to the computed physical
dissipation to yield a total dissipation. Concerning the wall-normal turbulent heat flux

ṽ′′h′′, we have encountered much fewer issues, since molecular dissipation plays a less
significant role and the dominating loss term is h′∂p′/∂y, which is well predicted.
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Size Number of nodes ∆X+ ∆Z+ ∆Y +

M1 100, 179, 100 1.79M 11.3 5.65 0.34-3.1

M2 256, 192, 256 12.5M 4.42 2.2 0.34-2.23

Table 1: Size, number of nodes and resolutions of M1 and M2.
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Figure 1: Budgets of k. Production (red), dissipation (blue), molecular diffusion (green),
turbulent diffusion (yellow), sum of terms (black). M1 (dashed-dotted lines), M2 (solid
lines).
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