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S1. Numerical procedures
The base-flow boundary-layer and continuity equations (2.8)-(2.9), supplemented by

the mass conservation law, are discretized according to a scheme that is an improved
version of that used by Hornbeck (1964). The base-flow streamwise velocity and pressure
fields are computed simultaneously and the base-flow radial velocity is computed a
posteriori through the continuity equation. A difference from Hornbeck (1964) regards
the treatment of the nonlinear convective terms in the base-flow x-momentum equation
(2.9). In their paper, these terms are linearized, i.e., the values at the previous x locations
are used in the nonlinear terms. Here, we instead use a predictor-corrector method for
the computation of the convective terms at step n. In the predictor step n − 1, an
initial approximation of the streamwise velocity and pressure fields is calculated via the
linearized discretized equations as in Hornbeck (1964). In the corrector step, new values
of Un and Pn are computed, using Un−1 and Pn−1 in the discretization of the convective
terms instead of those at the previous streamwise location. This procedure is repeated
iteratively until convergence is reached. The convergence criterion is based on the radial
velocity gradient at the wall, ∂U/∂r|r=R. The asymptotic composite solution derived in
§3.1 is used as initial condition at small x values.

The perturbation equations (2.11)-(2.12) are discretized using backward and central
finite-difference schemes in x and r, respectively. The degree of the radial velocity
equation (2.11) is reduced from fourth to second by defining the radial second derivative
of ur as a new variable. The resulting system is written in the form of a block tridiagonal
matrix and solved at each x by the Thomas algorithm (Cebeci 2002). The asymptotic
composite solution given in §3.2 is used as initial condition at small x values. At each
x location the behaviour of the velocity field as the pipe axis is approached is checked
against the asymptotic results of Lewis & Bellan (1990), discussed in §S3.2.
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S2. Boundary-region equations
We herein derive the final form of the boundary-region equations. In expanded form,

equations (2.3) and (2.4) read
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The substitution of (2.6)-(2.7) into (S2.1)-(S2.4) leads to the base-flow equations (2.8)-
(2.10) by collecting O(1) terms in the limits kx, Re−1

λ � 1 and F = O(1). By collecting
O(ε) terms, the boundary-region equations for the perturbation flow are found,

∂ux
∂x

+ ur
r

+ ∂ur
∂r

+ uθ
r

= 0, (S2.5)

(
−i+ ∂U

∂x
+ m2

Fr2

)
ux + U

∂ux
∂x

+
(
V − 1

Fr

)
∂ux
∂r

+ ∂U

∂r
ur −

1
F
∂2ux
∂r2 = 0, (S2.6)

(
−i+ ∂V

∂r
+ m2 + 1
Fr2

)
ur + U

∂ur
∂x

+
(
V − 1

Fr

)
∂ur
∂r

+ ∂V

∂x
ux+

2
Fr2uθ + 1

F
∂p

∂r
− 1
F
∂2ur
∂r2 = 0,

(S2.7)

(
−i+ V

r
+ m2 + 1
Fr2

)
uθ + U

∂uθ
∂x

+
(
V − 1

Fr

)
∂uθ
∂r

+ 2m2

Fr2 ur −
m2

Fr
p− 1
F
∂2uθ
∂r2 = 0.

(S2.8)

Equations (S2.5)-(S2.8) are also satisfied by
{
u

(0)
x , u

(0)
r , u

(0)
θ , p(0)

}
. The pressure and the

spanwise velocity component are eliminated from (S2.7) and (S2.8) to find (2.11) and
(2.12).

S3. Conditions at the pipe axis
In the cylindrical geometry, the pipe axis is a singularity in the equations of motion,

but the velocity vector and the pressure must be regular there. Constraints on these
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quantities must thus be satisfied, which leads to a specific behaviour of the Bessel-Fourier
coefficients as the axis is approached and to the boundary conditions at the axis. We
obtain the boundary conditions following the study of Lewis & Bellan (1990), discuss the
regularity conditions found by Batchelor & Gill (1962) and Khorrami et al. (1989), and
further analyze the problem according to Tuckerman (1989).

S3.1. Boundary conditions at the pipe axis
The boundary conditions for the perturbation flow at r = 0 are given in (2.28)-(2.30).

The boundary conditions (2.28) for m = 1 involve the azimuthal velocity uθ and therefore
(2.11)-(2.12) are solved together with the continuity equation (S2.5). For m = 2, there is
no need to solve for the continuity equation; as u′′r is used as a new independent variable
in the numerical solver, the last boundary conditions in (2.29) is replaced by u′′r = 0
because ur grows linearly with r from the pipe axis at leading order (Lewis & Bellan
1990).

S3.2. Symmetry and regularity at the pipe axis
The radial behaviour of the velocity components found in Lewis & Bellan (1990)

allows us to obtain the boundary conditions at r = 0 used to solve (2.11)-(2.12).
Information on the velocity field can be inferred by imposing symmetry and regularity
at the axis (Lewis & Bellan 1990). The streamwise velocity behaves as a scalar,
i.e., ux ∼ ψ̂mr

meimθ as r → 0. Lewis & Bellan (1990) explain that the radial
and azimuthal velocity components do not behave as scalars at the axis and, by
imposing regularity, they find ur,m ∼ λ̂mr

m−1eimθ, uθ,m ∼ iλ̂mr
m−1eimθ and

ur,m + iuθ,m → 0 as r → 0. When the vector is solenoidal, the last condition is
verified exactly at r = 0. Our oncoming disturbance (2.1) and the solutions in region
I, (3.19)-(3.21) and (3.31), all satisfy these conditions. For the gust disturbance,
ψ̂m = û∞x,mn(ξmn/4R)m/Γ (m + 1) and λ̂m = û∞r,mn(ξmn/2R)m−1/[2mΓ (m + 1)], while,
in region I, we find λ̂m = −2û∞r,mnJm(ξmn/2)R1−meix/ξmn for the leading-order
components and λ̂m = −βû∞x,mnJm(ξmn/2)R1−m/[2(2xkxRλ)1/2] for the next-order
components.

Tuckerman (1989) further elucidates that, in order to guarantee regularity at the pipe
axis, two conditions must be met when the velocity field Fourier-expands as û ∼ rĵeimθ

when r → 0, which is the behaviour that occurs for our free-stream disturbance (2.1)
and in region I. For the streamwise component, i) ĵ + m must be even and ii) ĵ > m,
while, for the radial and azimuthal components, i) ĵ + m must be odd and ii) ĵ >
min{m − 1, 2}. The number 2 in the last expression arises from imposing regularity
on the Laplacian of the velocity vector. This condition is not strictly necessary for our
inviscid free-stream and region-I disturbances, but we keep this restriction because these
perturbations are utilized as initial conditions for the viscous boundary-region equations.
In the last expression, Tuckerman (1989) also finds that m+1 must be considered together
with m− 1 for the combination ur,m + iuθ,m (refer to her (5.4)), but in our specific case
ur,m + iuθ,m → 0 because of continuity and therefore it is sufficient to consider m − 1.
The boundary conditions are fully consistent with Tuckerman (1989)’s conditions. The
asymptotic behaviours found by Lewis & Bellan (1990) all satisfy Tuckerman (1989)’s
conditions and so do our oncoming disturbances and region-I solutions, as shown by using
the exponent ĵ of the Bessel-function expansions given by Abramowitz & Stegun (1972).
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S3.3. Independence of the velocity vector from the azimuthal angle at the pipe axis
Batchelor & Gill (1962) and Khorrami et al. (1989) explain that the velocity

field must be independent of the azimuthal angle as the pipe axis is approached, i.e.,
limr→0 ∂u/∂θ = 0. This limit translates to the conditions i) ∂ux/∂θ=0, ii) ∂ur/∂θ−uθ=0,
iii) ur + ∂uθ/∂θ=0. These conditions are satisfied by the free-stream gust (2.1), the
solutions in region I found in §3.2.1, and our boundary conditions at the pipe axis.

For the free-stream gust, it is convenient to use the asymptotic expression Jm(r) ∼
(r/2)m/Γ (m + 1) for r � 1. Condition i) is satisfied when m 6= 0 because Jm(0) = 0
in these cases. Condition ii) is satisfied when m = 0 because J ′0(0) = 0, when m = 1
because the continuity condition (2.2) applies, and when m > 1 because both terms of
the solutions are ∼ rm−1. Condition iii) is satisfied when m = 0 if we set ûr,0n = 0, and
when m > 0 for the same reasons as for condition ii). Condition (2.2) further agrees with
the continuity check in equation (20) in Khorrami et al. (1989).

The leading-order solutions in region I, (3.22)-(3.24), satisfy the three conditions.
Condition i) is satisfied because of (3.22a) and conditions ii) and iii) are satisfied for
the same reasons as the gust velocity components because the potential (3.18) leads to
velocity components that have the same asymptotic behaviour of the gust components
as r → 0. The solutions in region I arising from the potential (3.18) satisfy condition
i), while conditions ii) and iii) are satisfied when m = 0 if ûx,0n = 0, when m = 1 if
ûx,1n = 0, and always when m > 1 because the solution is ∼ rm−1.

The boundary conditions at the pipe axis can be found by imposing conditions i), ii),
and iii) on (2.7). They apply to both ux, ur, uθ and u(0)

x , u
(0)
r , u

(0)
θ . When m > 0 condition

i) leads to ux = 0, condition ii) gives m2ur +uθ = 0, and condition iii) gives ur +uθ = 0.
It follows that ux = ur = uθ = 0 at r = 0 when m > 1. Similar to Khorrami et al. (1989),
linearly dependent conditions occur when m = 1 and thus ur+uθ = 0 in this case. These
conditions are the same as those found following Lewis & Bellan (1990). L’Hôpital’s rule
is used on the continuity equation to find 2∂ur/∂r + ∂uθ/∂r = 0 at r = 0 for every m
(Khorrami et al. 1989). This condition is simplified to ∂ur/∂r = 0 when m 6= 2 by use
of the radial dependence found by Lewis & Bellan (1990).

S4. Negligible near-wall curvature effects
We demonstrate that the curvatures effects are negligible near the pipe entrance and

near the wall (region II) when Reλ � 1. This limit allows simplifying the Navier-Stokes
equations in cylindrical coordinates (S2.1)-(S2.4) to the boundary-layer equations in
Cartesian coordinates for both the base flow and the perturbation flow in the proximity
of the wall. It follows that in region II the inner velocities {ux,in, ur,in, uθ,in} are given
by the Blasius solution for the base flow and by the solutions (4.13) on page 177 of Leib
et al. (1999) for the boundary-layer perturbation flow.

The boundary-layer thickness is asymptotically smaller than the pipe radius, i.e.,
δ/R � 1, which follows from Reλ � 1. Since y = R − r, where y is measured
from the pipe wall toward the pipe axis, we insert the following changes in (S2.1)-
(S2.4): r → R, ∂/∂r → −∂/∂y, ∂2/∂r2 → ∂2/∂y2, θ → z/R, and {ux, ur, uθ} →
{ux,in,−ur,in, uz,in}. The azimuthal modulation of the perturbation changes as mθ →
kzz, where kz = 2π, because m = 2πR = O(1). The continuity equation (S2.1)
immediately reduces to the Cartesian form. Besides the x-diffusion term that is negligible
under the usual large-Reλ assumption, the x-momentum equation (S2.2) has three
viscous terms: i) (RReλ)−1∂ux,in/∂y, ii) Re−1

λ ∂2ux,in/∂y
2, and iii) Re−1

λ ∂2ux,in/∂z
2.

Term ii) is asymptotically larger than the others because the near-wall scaling y/δ = O(1)
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leads to δ � R. The θ-momentum equation (S2.4) has one extra convective term and
three viscous terms: i) −uy,inuz,in/R, ii) Re−1

λ ∂2ux,in/∂y
2, iii) Re−1

λ ∂2ux,in/∂z
2, and iv)

−2(RReλ)−1∂uy,in/∂z. Like for the x-momentum equation, term ii) is asymptotically
larger than the others because δ � R. The y-momentum equation reduces to the
vanishing wall-normal pressure gradient. The Cartesian boundary-layer equations are
recovered, where the spanwise viscous effects are identically zero for the base flow and
negligible for the perturbation flow.

S5. Inviscid base-flow Stokes streamfunction ψ2
Equation (3.7) is solved by using the complex Fourier transform along x, whose inverse

is

ψ2(x, r) = 1√
2π

∫ +∞+iγ

−∞+iγ
ψ̂2(ζ, r)eiζxdζ, (S5.1)

where the use of γ ∈ R < 0 is required to render
√
xeγx absolutely integrable when

x > 0. This integration path is necessary to define the complex Fourier transform of the
boundary condition (3.8a). The function ψ̂2 satisfies rψ̂′′2 − ψ̂′2−rζ2ψ̂2 = 0. The bounded
solution that satisfies the boundary condition (3.8c) is ψ̂2 = k1(ζ)rI1(ζr) because the
other solution proportional to the unbounded modified Bessel function of the second
kind K1 must vanish (the Frobenius method shows that it is not multiplied by r). By
substituting the solution of ψ̂2 into (S5.1) and using the complex Fourier transform of
(3.8a) and (3.8b), we find that
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where =(ζ) < 0 for the integral in (S5.2) to be defined. The solution to (3.7) is

ψ2(x, r) = βr
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The second integral, i.e., the complex Laplace transform which exists because γ < 0
(refer to page 401 of Dettman (1965)), leads to the final solution (3.11).

It is immediate to verify that (3.11) satisfies the boundary condition at the pipe axis,
(3.8c). To verify that (3.8a) for x > 0 and (3.8b) for x < 0 are satisfied, the contour paths
in the left and the right graphs of figure S1, are used, respectively. For both contour paths,
the residue is zero because no poles are contained within the paths and the integral along
the line l (=(ζ) = γ) is (3.11) with r = R, i.e., the modified Bessel functions cancel out.
In the left graph of figure S1, the integrals along l1 and l2 cancel out and the integrals
along the arcs a1 and a2 tend to zero as the radius of the arcs Ra increases. Upon setting
ζ = iγ + Rae

iθ, 0 < θ < π, we note |eiζx|= |e−γxeixRa(cos θ+i sin θ)|= e−γxe−xRa sin θ 6
e−γx, which justifies the choice of the arcs in that θ range and implies that∫

a1,a2

eiζx

ζ3/2 dζ 6
e−γxπRa

(Ra − γ)3/2 → 0 as Ra →∞. (S5.4)

It follows that (3.11) with r = R and x > 0 is equal to the opposite of the integral
along the circle c in the left graph of figure S1. By changing the variable ζ = iζx in the
integral along c, one finds the Hankel contour integral representation of the reciprocal
of the gamma function, as shown on page 197 of Dettman (1965), which leads to (3.8a).
When x < 0, (3.8b) follows immediately because the integral along the arc a3 in the
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Figure S1: Contour paths of integration to verify that the solution (3.11) satisfies the
boundary conditions (3.8a) (x > 0, left graph) and (3.8b) (x < 0, right graph).

right graph of figure S1 vanishes as Ra increases, following an argument analogous to the
integrals along a1 and a2, the difference lying in the range π < θ < 2π.

S6. Leading-order perturbation potential in region I
The solution to (3.15) that satisfies the boundary conditions (3.16) can be obtained

by separation of variables when x � 1, i.e., φ = φ̂(r) exp [ikx(x− t) + imθ], where the
x dependence is found by matching with the gust (2.1). The quantity φ̂(r) satisfies the
modified Bessel equation (3.17) and is equal to

φ̂(r) = −
û∞r,mnJm(ξmn/2)Im(kxr)

kxRI ′m(kxR) = O(1), (S6.1)

where Im is the modified Bessel function of order m. As kx � 1, the asymptotic
behaviour of the modified Bessel function for small argument, i.e., Im(kxr) ∼ Γ (m +
1)−1 (kxr/2)m(Abramowitz & Stegun 1972), is substituted into (S6.1) to find

φ̂(r) = −
2Rû∞r,mnJm(ξmn/2)

mξmn

( r
R

)m
, (S6.2)

from which (3.18) is found. Solution (S6.2) is also found by solving the Euler differential
equation that arises by neglecting the term proportional to k2

x � 1 in (3.15).
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