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Supplementary material

In this supplementary material are the appendices with more details.

Appendix A. About the vector B
Like the other quantities, the vector B in (2.14) can be decomposed as
B, = Si(r)e,.P"(cosf) exp(jmep — wt), i =1, 2, 3, (A1)

where S(r) is the initial amplitude of B.
Substituting the decomposition (A1) into (2.14) and then (2.14) into (2.13),
we get the following governing equation for S(r),

> = ( + )Si + P
dr? r? i

Considering the boundedness of S(r) at the origin 7 = 0 and at infinity, the
solution to (A 2) is

S, =0, i=1, 2, 3. (A2)

S = Cir? Jy, s (0hr), (A3)
Sy = Cor? Jyp 1 (Par) + Car2 Yy 1 (Var), (A4)
Sy = Cyr HY, (W), if Tm(w) #0 (A5a)
Sy = Csr2 J, 1 (V5r) + Cor? Yoy 1 (9sr), if Im(w) =0 (A5b)

where
9, = JPZ =1 9 3, (A6)

i

Jip1(+) and Yy 1 (+) are, respectively, the Bessel functions of the first and second

kinds, Hl(-&l-)L(') is the Hankel function of the first kind with order I + 3, and

C41-Cp are the coefficients to be determined. Considering that the Bessel/Hankel
functions of fractional order l—l—% relate to the spherical Bessel functions of integer
order [, the solution to (A 2) can also be expressed in terms of the latter.

Now substitute the decompositions (2.14), (2.16) and (A 1) into the boundary
conditions at the inner and outer interfaces (2.3)-(2.10). While doing this, one can
casily find that neither the vector B nor its initial amplitude S(r) plays a role in
the kinematic boundary condition, the continuity of velocity in the r direction or
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the normal force balance at an interface. They only need to satisfy the continuity
of velocity in the 6 and ¢ directions and the tangential force balance.
The continuity of velocity in either 6 or ¢ direction in (2.4) yields

51252 at T:Rl. (A?)

The equality of either 8- or rp-component of the deviatoric stress tensors in
(2.5) yields

d (M) at r— R, (A8)

dr r2
Similarly, (2.8) yields
Sy =955 at r =R, (A9)
and (2.9) yields

dr r2

Note that in the bulk equation (A 2) and boundary conditions (A 7)-(A 10) only
the eigenfunction S(r) is involved.
Substitution of (A 3)-(A5b) into (A 7)-(A 10) yields

Cidipy (01R) = Codiy1 (o Ry) + C3Y 1 (V2 Ry), (A11)

4 (M) . (A 10)

Gy [(l - 1)Jl+%(191R1) - 191R1Jz+g(191R1)] = p2Cs [(l - 1)Jl+%(192R1)
—§2R1J1+%(192R1)] + [LQCg [(l — 1)Y2+%(192R1) — 192R1Y2+%(192R1)] s (A 12)

@H}féwgm) = CyJip 1 (V2Ry) + C5Yi, 1 (V2 Ry), if Im(w) # 0 (A13)

C5Jl+%('l93R2) + Cﬁ}/z_;’_% (193R2) = C2Jl+%(192R2) + C3E+%(192R2), if Im(w) =0
(A 14)

/,6304 |:(l — 1)Hl(—&l-)% (193R2) — ﬁgRng(i)% (193R2)} = /1,202 [(l — 1)Jl+%(192R2)

—192R2Jl+%(192R2)]+/L203 [(l — 1)K+%(192R2) - 192R2Y2+%(192R2)] s if Im(w) 7£ 0
(A15)

p3Cs [(1 — D Jip1(93Rs) — 193R2Jz+g(193R2)} + usCs [(1 — 1Y, 1 (UsRs)
—193R2Y2+%(’l93R2):| - /JQCQ [(l - 1)Jl+%(192R2) - 192R2Jl+%(192R2)] ‘I‘
/JQCg [(l — 1)Y2+%('[92R2) — 192R2E+%(192R2)] s if Im(w) =0. (A 16)
In the case Im(w) # 0, (A11)-(A13) and (A 15) are four linear homogenous

equations in the four coefficients C7-C,. Hence nontrivial solutions exist only if
the determinant of coefficients is zero, which gives the following characteristic



equation
1 K1 (%1 0
0 K2 V2 1 _
pa [l =1) = RG] peHs polls 0 =0, (A17)
0 ,ugHﬁ /,LQHG 3 [(l — 1) — 193R2T2]
where
Jig (01R1) H,jy (95 R2) (A18)

Hs = (I — 1)ky — YaR1k3, Hs = (I — 1)ka — ¥ RaRKy, ( )
IIs = (I — 1)vy — 93 Ryvs, ITg = (I — 1)vg — 93 Rouy, (A 20)
Ky = Jl+%(192R1), Ko = Jl+%(192R2), Ky = Jl+%(192R1), Ky = Jl+%(192R2), (A21)
v =Y 1 (02Ry), va =Y 1 (VaRs), vy = Y 3 (VaR), vy =Y 3(2R). (A22)

All the roots of the transcendental equation (A 17) are purely real, i.e. Im(w) =
0, as in the case of a viscous droplet suspended in a viscous host fluid (Miller &
Scriven 1968; Prosperetti 1980b). This result is against the hypothesis Im(w) # 0
based on which (A 17) is derived. Accordingly, the solution of S; expressed by
the Hankel function in (A 5a) is incorrect.

Under the hypothesis Im(w) = 0, the four equations (A 11), (A12), (A14)
and (A 16) constitute an under-determined system for the five unknowns (C;-Cs,
C5, C). In such a case, the eigenvalue w can be any real, non-negative number,
which forms a continuous spectrum occupying the entire positive real semi-axis
in the complex frequency plane. Physically, the continuous spectrum corresponds
to purely rotational waves or shear waves (Miller & Scriven 1968; Prosperetti
1980b). Waves of this type cause no interface displacement and are irrelevant to
shape oscillations of the droplet. Moreover, due to the lack of restoring force,
these waves are always damped without oscillation.

Appendix B. Derivation of the characteristic equation for
small-amplitude shape oscillations of a viscous
compound droplet suspended in a viscous host fluid

Taking the divergence of (2.2) and then combing it with (2.1), we get

Vip; =0, i=1, 2, 3. (B1)
The pressure perturbation p can be decomposed as
pi = pi(r) /" (cos 0) exp(jmep — wt), i =1, 2, 3, (B2)

where p(r) is the initial amplitude of p and also its eigenfunction.
Substitution of (B 2) into (B 1) yields
d*p;  2dp; 11+ 1) .
— — AZ-:O7 :172,3- B3
dr?2  rdr rz P ! (B3)
Considering the boundedness of the pressure at the origin » = 0 and at infinity,
the solution to (B 3) is

= A, (B4)
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ﬁg = AQTZ + A3T_(l+1), (B 5)
Ps = A4r_(l+1)a
where A;-A, are the coefficients to be determined.
For each phase, the velocity field v is purely poloidal, whose three components

can be expressed in terms of a scalar defining function U(r) (Chandrasekhar
1959), i.e.

I(1+1)

U= UP/"(cos ) exp(jmp — wt), (B7)
~ 1dU 0P™(cos ) .
v = 20 exp(jmp — wt), (BY)
1 du., .. .
v, = rsinGEJmPI (cos 0) exp(jmp — wt). (B9)

Further, the momentum equation (2.2) can be replaced by the following ordi-
nary differential equation of U(r) (Chandrasekhar 1959)

AUy 1(1+1) pLw A, rtt
_ 22U s ——— B1
dr? r2 Uit e % pl+1’ (B10)
d’U,  1(1+1) pow Ay 7Y Ayt
- Uy+—U;=— - —— B11
dr2 r2 2+/L2 2 ,u2l+1 U2 l ’ ( )
d*Us 11+ 1) psw Ayrt
- U+ —Us; = ———. B12
dr? r? s 13 ’ JIZ e ( )
The solutions to (B 10)-(B 12) are
A, it B
1= pl_wl+_1 + Asr Jl+%(1917”), (B13)
A Tl+1 A T_l 1 1
U, = pz—il - pQ_iT + Agr? Jip 1 (9or) + Arr? Y 1 (Wor), (B 14)
Uy = AT A, 9 B15
3__p3_w7+ 8T l+%( aT), ( )

where As-Ag are the coefficients to be determined and ¥J; is defined in (A6).
By writing the solution of U; in the form of (B 15), we hypothesize that Im(w)
is not equal to zero. Similar to the solution of S; discussed in appendix A, the
other hypothesis Im(w) = 0 results in a continuous spectrum consisting of the
entire positive semi-axis in the complex frequency plane, which corresponds to
overdamped modes and has no influence on shape oscillations of the droplet
(Miller & Scriven 1968; Prosperetti 1980b).

Now express the boundary conditions (2.3)-(2.10) in terms of the scalar defining
function U(r). From (2.3),

I(1+1)

R2 Ul ’r:Rl = _wéh (B 16)
1

Uilr=r, = Us|r=pg,- (B17)
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Both the conditions in (2.4) yield

T‘:Rl :|

T—R2:| '

1-

2.

a_av,
d'l" r=R; - d'l" r:Rl‘
Both the conditions in (2.5) yield
11 + 1)U o 2 dU, d*U, B
= =t T R A ek T A2 lem]
l(l+1)U| _2.dU, d’U,
? R% 2=t R1 dr r=Ry dr?
From (2.6),
- d [l(l+1
— AR — ARy 4o, — i+ )Uz + ARt
dr r2 =Ry
d [l(l+1) nl=1)(142),
o= U —
Hldr |: r2 l:l N R% é-
From (2.7),
(141 .
( R% )U3|7‘:R2 = —(/.)52,
U2|T:R2 = U3|7’:R2‘
Both the conditions in (2.8) yield
av v,
d?” T:Rz a d?” T:RQ'
Both the conditions in (2.9) yield
l(l+1)U| _2.dUs d*Us B
Hs R% Blr="Ra R2 d?" r=Rs d'l"2 r=Ro -
l(l+1)U| _2dU, d’U,
Hz2 R% 2lr=Hz R2 dr r=Ry dr?
From (2.10),
_ d [l(l+1 _
AsRl+ AgRy Y — 2, [ ( = )Ug] T AR, Y
d [l(l+1) Yl =1)(1+2) -
21— —
Then substituting (B 13)-(B 15) into (B 16)-(B 25) yields
A, R -3 o
I(l+1) [pl_c:l _; 1 + As Ry 2Jl+§(191R1):| = —wéy,

A R
pwl—+1

—l— A5R1_§Jl+%(191R1) ==

A,y Rll—l ﬁ Rl_(l+2)

[)2_Wl+1_p2w

l

(B18)

(B 19)

(B 20)

(B21)

(B22)

(B 23)

(B24)

(B 25)

(B 26)
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A

1w

oW

%

2(1—1 _ _
= Mo {—)Alefl - —A3Ry ) 4 ARy
paw p2w

“— R 4+ AR, ? [(l + 1)1 (V1 Ry) —

ﬁRl

1

2(1-1)
prw
(

+ AeRy 2 i1 (02 R) + A7R1

As
p2w

+ AR [(L+ )Yy (05R)) —

21+ 2)

Rl—(l+1) + AﬁRl—% [(l + 1)Jl+%(19231)

191R1J[+%(191R1)]

- 192R1 Jl+% (ﬁle)]

192R1Yz+g(192R1)] , (B28)

2 (22 -

AR 4 ART® (217 =2 = 9TRY) s 1 (01 Ry) + 201 Ry Jpys (91 Ry)] }

2= 03RY) iy 3 (0:21)

420, Ry T s (0,Ry)] + ArRy 2 [(202 — 2 — 3Ry 3 (VoR0) + 205 Ry Vi s (95 Ry )] } ,

[1_

[1_

2um il =1
pw R?

1222

(B29)

):| AlRll—Q[Lll(l+1)R1_%A5 [(l - 1):][+%(191R1) - 191R1Jl+%(191R1)]

2 2 1 2
pa 11— )] AgRll—|: po (I +1)(1 + )] A3R1—(l+1)

pow R} p2w R?
+ 2,&21(l + 1)R1 Aﬁ [(l - 1)Jl+%(192R1) — 192R1Jl+%(’l92R1)]
_5 [—1)(1+2),
167 +2,U2l(l+1)R1 2147 [(l - 1) (192R1) 192R1Y2+%(192R1)] = MR—)Z()&’
1
(B 30)
A l+2) R
3
A, RQ—(l+2) 5 B A, Rl2—1 A R, (14+2)
w1 + AsH, H”l (9 R2) = powl+1  pow I

172

173

174

175

176

177

178

Ay
pP3wW

of

AR | AR, ? [(z +1)H

_ A

oW

Rl

21+ 2)

p3w

+ AeRy * i1 (02 Ra) + A7R2

As
p2w
+ A7R, : [(1+ DY 1 (U02R)

ARy 4 ARy [(2z2 — 2 92R?)

2Ry Y 4 AR [(14+ 1) Ty (02Ro)

(1)
H,

+1(02Rs), (B32)

Dy (95 Ra) = s RoH Y, (95 o)

- 192R2Jz+g (19232)]

- 192R2Yz+g(192R2)] , (B33)

(93 R2) + 203 Ry H(Y) (19332)] }
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198

7
2(0—1 2
_ m{ =)y 202 g o A R E (2 — 2~ 922 Ty (921R2)

pPaw pPaw
+2192R2J[+%(192R2)] + 147R2_§ [(212 —2— 19§R§)Y2+%(192R2) + 2192R2Y2+%(192R2)] } 5
(B 34)
2 1 2 _s
_ [1 _ 2w (D42 )] ARy 231+ 1)R; 2 Ag [(l - 1)Hl(i1 (U3R2)

p3w R3

2in (1 — 1) 2p2 (1 +1)(1+2) —(14+1)
—193R2HH_3 (193R2)] |:1 — pg_w R2 A2Rl2+ 1-— m_wT A3R2 +

— 2ﬂgl(l + 1)R2 2A6 [(l - )Jl+%(02R2) - 192R2J[+%(192R2)]

Pl-1(l+2),
TR ©
(B 35)

Equations (B26)-(B35) constitute a linear homogeneous system for the ten

~2ul(1+1) Ry * Az [(1 = )Yy 4 (92Rs) — 05 RoYy, 3 (02R,)] =

unknowns (A;-Ag, él, 52) In order that the system has nontrivial solutions, the
determinant of coeflicients must be zero, which gives the following characteristic
equation

w 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 w
0 1 0 R! Ry % R "k, R, *v, 0 0 0
0 0 0 RS! R, ¥ R, 2 ks R, 2 v, 1 0 0
0 I+1Xs ((+DRT —IR/"™™  R"H R *II, 0 0 0
0 0 0 -(+DRS IR —RCH,  -RCIL 1 Z 0|7 0,
0 X; X, Ys Y- po Ry H3 po Ry ‘jﬂg 0 0 0
0 0 0 Y Ys po Ry H4 poRy *Il,  Zs Zy 0

X, -X, X4 -Y, Y, 2po R, , 2uR7 I 0 0 0
0 0 0 Y, ~Yy 2R, ?Hg —2uyR, Iy —Zy Zs Z,
(B 36)
where
Hl = (l + 1)/@1 — 192R1/€3, H2 = (l + 1)/‘%‘2 - 192R2/€4, (B 37)
H3 = (2[2 —2— ﬁ%R%)/‘Il + 2192R1/ﬂ73, H4 = (212 -2 19§R§)K]2 + 2192R2K24,
(B 38)
Hl = (l + 1)’1)1 — 192R1’U37 H2 = (l + 1)U2 - 192R2'U4, (B 39)
Hg = (2l2 —2— 19§R§)'U1 + 2192R1'U37 H4 = (212 —2— 193R§)U2 + 2192R2U4,
(B 40)
n(l-1)(+2) pw  2p(l—1)
X, =2 JerTA A sy ) B41
1 Rzlg ) 2 I R% 5 ( )
w 2
X3 = /.Ll(_ﬁfR? + 2'[91R1T1), X4 = plT - 521 (19 RlTl) (B 42)

X5 = 2,&1([2 - 1), Xﬁ = —191R1T1, (B 43)
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219
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221

222
223
224
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226

227

Y, = [@ _ 2=l 1)] R, Y, = [% _2ml—1) 1)] RS, (B4d4)

] R? I R?
v v 20(+2)] ary = [ pw 2p(l+2)] L-are)
Y3_[z+1 R2 BT Ya= T R2 B
(B45)
Y5 =2ua(> — DR, Y =2u(1? — )RS, (B 46)
Y7 =2ml(l+2)R; ", Y = 2usl(l+2)Ry ™2, (B47)
251 + 2
7, = Lo 2sl - ) 2= s [—2(2 + 1) — 92R% + 205R.T3)
I+1 R2
(B 48)
P3w 2u3 Yl = 1)(1+2)
Zi= iy~ g (AL haReYy), Zi= I : (B49)
Z5 = 2[&3[([ + 2), Zg = —(2l + 1-— 193R2T2), (B 50)

and the other terms are given in (A 6) and (A 18)-(A 22).

Following the method of Miller & Scriven (1968) and introducing the vorticity
instead of the scalar defining function of the velocity, Lyell & Wang (1986) derived
the characteristic equation in the form of 10 x 10 matrix as well. Our derivation
is different, but the resulting characteristic equation (B 36) is equivalent to the
one obtained by Lyell & Wang (1986).

Several limiting cases can be obtained directly from (B 36).

Case 1: a viscous liquid droplet in vacuum

Suppose that only the core fluid exists, and (B 36) reduces to the characteristic
equation for a single viscous liquid droplet in vacuum:

w 1 0
0 X5 X;|=0. (B51)
X —Xs X4

After some straightforward manipulations, (B 51) turns into

2 2012 -1 200 —1 2 1T
w? ﬁ%R% — 2191R1T1 ﬁ%R% 191R1 — 2T1
where wy; is the frequency of oscillation in the inviscid case,

TR

The characteristic equation (B 52) is identical in form to that obtained by Chan-
drasekhar (1959) and Reid (1960).

Case 2: a gas bubble in a viscous host liquid

In this case, we assume that the core and shell fluids are a gas of negligible
hydrodynamic effects. Hence (B 36) reduces to

1 0 w
—Zy Zz Zy
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After some manipulations, (B 54) becomes

wos _ 2(0+2) 21+ 1)93R3 —2(1 - 1)1+ 1)(20 + 1 — U3, T5)

= -1 B55
where wp3 is the frequency of oscillation in the inviscid case,
I—DHl+1)({1+2
i =D DE+) B56)

p3 3

The expression (B 55) accords with the characteristic equation presented by Miller
& Scriven (1968).

Case 3: a viscous droplet suspended in a viscous host liquid

Suppose that the shell is the same fluid with the core (p1 = pa, p1 = pa)
and remove the inner interface (7; = 0). Thus (B 36) reduces to the following
characteristic equation for a viscous droplet in a viscous host liquid,

w 1 0 0 0
0 1 0 1 0
0 I+1 Xg —1 —Zs|=0. (B57)
0 X5 X3 Zs Zy

X1 =Xy X4 2y —Z3

Note that all Ry’s in (B57) should be replaced by R,. The presentation in the
form of 5 x 5 matrix in (B57) is similar to and also effectively equivalent to the
characteristic equation given by Miller & Scriven (1968).

In addition, (B 57) can be reduced to the following form of 3 x 3 matrix,

Xe s 20+1
Xs —Zy X5—Zs =0, (B 58)
—Xy —Zs Xo+ 7y + 22

where, again, all R;’s should be replaced by R,. This equation is identical to that
given by Basaran et al. (1989).

Appendix C. Checking the eigenvalues with the aid of the
characteristic equation

Using the scales chosen in section 2, the characteristic equation (B 36) is nondi-
mensionalized as follows

D3:
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w 1 0 0 0 0 0 0O 0 0
0 0 0 0 0 0 0 1 0 w
0 1 0 a~! a~(+2) a2k, a~3u 0 0 0
0 0 0 1 1 Ko (%)) 1 0 0
0 I+1 Xs (I+1)a"t —la=™D g 2H, a21I, 0 0 0
Lo 0 0 —(+1) K —H, —11, I Zg 0|~
0 X; X3 Y, Y, a3 Hy a3y 0 0 0
0 0 0 Y Yy H, 11, Zs Zy 0
X, -X, X, -V, Ys;  20h,a”%Hs; 20h,a™%II; 0 0 0
0 0 0 Y, -Y, —20hyHs  —20hyIlls —Z, Zs Z,
252  where
Priw w Pr3w
253 Z1 11Ol 22 Ohy’ Z3 15Ol (C2)
(1)
Jiis(za H, %5 (23)
254 Tl = l+2( - )7 TZ = l(—:; ) (C 3)
Jiy1(z10) Hl_’_%(Zg)
255 k1= Jip1(220a), ke = Jip1(22), k3= Jiyz(20a), Ka=J13(22), (C4)
256 v =Y 1(220a), vy =Y 1(22), vz =Y 3(200a), va="Ys(2), (C5H)
257 Hl = (l + 1)51 — Z9QK3, H2 = (l + 1):‘4;2 — Z9KRy, (C 6)
258 Hy = (21 — 2 — 23a*)ky + 2zaks, Hy = (21> — 2 — 23)ky + 220k4, (CT)
259 H5 = (l — 1)/'{,1 — Z2QKR3, H6 = (l — 1)/{,2 — Z9ky, (C 8)
260 Hl = (l + 1)?]1 — Z2QU3, HQ = (l + 1)?)2 — Z9Uy4, (C 9)
261 II; = (21* — 2 — z3a®) vy + 220avs, II, = (21 — 2 — 23)vy + 22904, (C10)
262 H5 = (l — 1)’1}1 — Z2QUs3, HG = (l — 1)’1)2 — Z2Uy4, (C 11)
-1 2 2 -1
263 X, = nl-D0+2) ), X, = P 1 Oha(l ), (C12)
a’ l a?
- 21,1 Oh
264 X3 = pra(—22a% + 2z1aTy), Xy =2 ll“’ _ck L (malh), (C13)
265 X5 = 2'LLT1(12 - 1), XG = —zlafl, (C 14)
_ 2 -1 _
266 Y, = [‘7" - %] al, Y, = "7" — 20h,(1 — 1), (C15)
a
— w 20hy(1+2) 4oy © w
267 Y3: |:l—|—1 — pe a i+ s Y4: H—1—20h2(1+2), (016)
268 Ys=2(-1)d"", Yg=2(°-1), (C17)
269 Y, =2(1+2)a"""? Yg=2(+2), (C18)
270 Zl = lpi’__y}i — Qﬂrgth(l + 2), ZQ = Ur3 [—2(2l + 1) — Z§ + 223T2] s
(C19)
271 Z3 = lpioi - 2/.Lr30h2(2l + 1- Z3T2), Z4 = (l - 1)([ + 2), (C 20)

272 Z5 = 2,1,Lr3l(l + 2), Z6 = —(2l +1-— Zng). (C 21)
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Figure 1: The absolute value of Ds, i.e. |Ds|, obtained by substituting the
eigenvalues in figure 14(c¢) into the determinant D3 in (C 1), versus the host to
shell viscosity ratio pr3.

Without loss of clarity, the same symbols are used to denote the corresponding
nondimensional terms in (C 1). Replacing the element in row 4 and column 10 of
the matrix in (C1) with —w and eliminating columns 8 and 9 and rows 2 and 6,
(C1) reduces to the characteristic equation for the case of a viscous compound
droplet suspended in vacuum or in a gas of negligible hydrodynamic effects;
further, replacing the element in row 3 and column 1 with —w and deleting
columns 2 and 3 and rows 1 and 5, (C 1) reduces to the characteristic equation
for the case of a viscous liquid shell with the core and the host being vacuum or
a gas of negligible hydrodynamic effects.

The transcendental equation (C 1) is cumbersome. Instead of solving it to get
the eigenvalues, we use it as a tool to check the exactness of the eigenvalues
obtained with the aid of the spectral method. The strategy is as follows: We
substitute the eigenvalues into the determinant D; in (C1) and calculate the
corresponding absolute values of Dy, denoted by |Ds|. If |Ds| = 0, the eigenvalues
are accurate. However, due to the numerical errors in the use of the spectral
method, the values of |Ds| are not exactly zero but remain quite small, as shown
in figure 1. In such a case, the eigenvalues obtained by the spectral method are
considered to be acceptable in accuracy.

Appendix D. Derivation of the characteristic equation for the thin
shell limiting case

In the thin shell limit, the radius ratio a = 1 — € with ¢ <« 1. To derive the
characteristic equation for this limiting case, we expand the nondimensional
characteristic equation (C 1) in a Taylor series in the small parameter € (to save



206 space, only the first two orders of the expansion are explicitly expressed):
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D34 = 1 — €(l — 1) + 0(62), D35 = 1 + E(l + 2) + 0(62),
Dy =1+ ;6 +O(€?), Dgg=1+ ge + O(é?)
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313 Xy =7.(—1)(+2)+3e.(1—1)(1+2) + O(e?),
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323 Y, =2l(142) + 2el(l +2)* + O(€?),
324 and the other terms remain unchanged.
The leading order O(1) of (D 1) yields
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330 At least one of the two determinants in (D 2) equals zero. The eigenvalues
331 given by the first determinant being equal to zero are all purely real, which does
332 mnot meet the hypothesis Im(w) # 0. So the only possibility is that the second
333 determinant equals zero. This determinant can be written as the product of two
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smaller determinants, i.e.

= 20 + 1 7
x| pml=E 425 X5 — Zs ~Zy|=0. (D4)
—P9 + 2O Z) Xo+ 20+ (3 + D)EHEE — 7,

0 w

Apparently, the solution to the first determinant in (D 4) being equal to zero
is just zero, against the hypothesis Im(w) # 0. On the other hand, considering
that this determinant corresponds to the positions of the interface amplitudes él
and &,, its structure may suggest that & = &. That is, the interfaces oscillate in
phase and with equal amplitude.

The second determinant in (D 4) being equal to zero yields the characteristic
equation for the thin shell limiting case. It is not surprising to find that the
characteristic equation in this limit is identical to (B 58) for the case of a viscous
droplet suspended in a viscous host fluid, except that the interfacial tension here
is the sum of the inner and outer interfacial tensions v, + 1. It turns out that in
the thin shell limiting case the hydrodynamic effects of the shell can be neglected
to the leading order.



