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A. E�ciency of the fluxes

We have observed (figures 7-8 in the main text) that baropycnal work h⇤`i dominates
at the largest scales. It acts as a conduit for mean injection from potential energy by
transferring energy from the largest scales to smaller scales in the inertial range where
deformation work ⇧ takes over and dominates the cascade process.
Since this work is the first to investigate ⇤` as a function of scale `, a basic question

that arises is whether its decay at small ` is due to a decay in its magnitude or due to a
mis-alignment of rP ` and ⌧ `(⇢,u). We shall answer the question in this subsection. We
first reiterate the flux expressions in equation (3.5) in the main text for convenience:

⇧ = �⇢̄@jeuie⌧(ui, uj) = �⇢̄eSije⌧(ui, uj)

⇤ =
1

⇢
@iP ⌧(⇢, ui)

where eSij = 1/2(@ieuj + @jeui) is the Favre filtered velocity strain tensor. Following (Liao
& Ouellette (2014); Fang & Ouellette (2016); Ballouz & Ouellette (2018)), we define the
cascade e�ciency �⇤ and �⇧ to be

�⇤ =
@iP̄ ⌧(⇢, ui)

(@jP̄@jP̄ )1/2(⌧(⇢, uk)⌧(⇢, uk))1/2

�⇧ = �
eSij e⌧(ui, uj)

(eSkl
eSkl)1/2(e⌧(um, un)e⌧(um, un))1/2

(S-1)

which resembles the cosine of the angle between two vectors. These definitions in equation
(S-1) follow that in Ballouz & Ouellette (2018) who studied the cascade e�ciency in
constant-density turbulence. By the Cauchy-Schwartz inequality, �1 6 �⇤,�⇧ 6 1.
Similarly, the magnitudes of these two fluxes, denoted by M⇤ and M⇧ , are defined by

the denominator in the flux e�ciency equation (S-1):

M⇤ = (@jP̄@jP̄ )1/2(⌧(⇢, uk)⌧(⇢, uk))
1/2

M⇧ = (eSkl
eSkl)

1/2(e⌧(um, un)e⌧(um, un))
1/2

(S-2)

and can be regarded as the product of tensor magnitudes. The actual ⇧ and ⇤ terms are
proportional to the product of e�ciency and magnitude

⇤ / �⇤ ·M⇤, ⇧ / �⇧ ·M⇧

with a proportionality factor involving density.
The cascade e�ciency and magnitude of ⇤ in 2D and 3D are shown in figure S1.

Magnitude M⇤ in both 2D and 3D decreases at smaller scales as appears in figures 1(b)
and 1(d). In fact, figure S2(b) shows that M⇤ seems to scale ⇠ k

�2/3. This decay can
be understood from basic scaling estimates for the magnitude of ⇤ = 1

⇢rP `⌧ `(⇢,u),

following (Eyink (2007-2008, 2005); Aluie (2011)). We first observe that in our flows,
both 2D and 3D, the pressure field is mostly smooth as evidenced by the scaling of its
filtering spectrum in figure S2(a), decaying at least as fast† as k

�3, where k is filtering
wavenumber (inverse of scale). Therefore, the pressure gradient is dominated by the

† As Sadek & Aluie (2018) elaborate, the filtering spectrum for a field with actual scaling that
is steeper than k

�3 will appear as k�3 when using 1st-order filtering kernels such as a Gaussian.



Supp. Mat. – 2 D. Zhao, R. Betti and H. Aluie

(a) PDF of �⇤ in 2D-RT. Mean e�ciency equals
0.50, 0.48, 0.44 for ` = Lz/8, Lz/32, Lz/128,
respectively.

(b) PDF of M⇤ in 2D-RT. Mean magnitude
equals 7.8E-3, 3.7E-3, 1.68E-3 for ` = Lz/8,
Lz/32, Lz/128, respectively.

(c) PDF of �⇤ in 3D-RT. Mean e�ciency equals
0.71, 0.70, 0.54 for ` = Lz/8, Lz/32, Lz/128,
respectively.

(d) PDF of M⇤ in 3D-RT. Mean magnitude
equals 6.1E-3, 3.0E-3, 1.2E-3 for ` = Lz/8,
Lz/32, Lz/128, respectively.

Figure S1. PDFs of the e�ciency and magnitude of ⇤ at di↵erent scales from the 2D4096 and
3D1024 data at time bt = 4. The PDFs of e�ciency are on a linear-log plot, while the PDFs of
magnitude are on a log-log plot for clarity.

largest scale L,

rP ` ⇠
�P (L)

L
,

and is (to leading order) independent of `, where an increment is defined as usual, �f(r) ⌘
f(x+ r)� f(x). Here, L is a characteristic large scale of RT, comparable to the domain
size. On the other hand, subscale mass flux scales as (Aluie (2011)):

⌧ `(⇢,u) ⇠ �⇢(`)�u(`) ⇠ `
�⇢+�u ⇠ k

�2/3

where �⇢(`) ⇠ `
�⇢ , �u(`) ⇠ `

�u , and from figure 5, the two scaling exponents �⇢ /
1/3,�u ' 1/3, yielding �⇢+�u ⇡ 2/3. This explains decay of M⇤ as a function of filtering
wavenumber k` = Lz/` in both 2D and 3D-RT. The decay is faster in the dissipation
range since fluctuations giving rise to ⌧ `(⇢,u) decay faster at those scales.

An important conclusion from the scaling of the pressure spectrum in figure S2(a) is
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(a) (b)

(c) (d)

Figure S2. Explaining the decay of ⇤ at small scales. (a) Filtering spectrum, EP , of pressure
using the 2D4096 and 3D1024 data at bt = 4. EP ⌘ d

dk h|P `|2i, where the k`-derivative is in the
filtering wavenumber k` = Lz/` following equation (2.13) in the main text. (b) Scaling of M⇤

in 2D and 3D. The normalization, h✏inj + Pr · ui, is calculated from the corresponding 2D and
3D data. (c) Mean e�ciency of ⇤ as functions of scale in 2D & 3D, both of which show a weak
dependence on k`. (d) Decay of h⇤i in 2D & 3D as functions of scale.

that energy transfer by ⇤ is (infrared) non-local in scale due to dominance of the largest
scale L in the pressure gradient (Eyink (2005); Eyink & Aluie (2009); Aluie (2011)). This
is similar to energy transfer in the Batchelor range of magnetohydrodynamic turbulence
at high magnetic Prandtl numbers (Batchelor (1959); Aluie & Eyink (2010)), where
energy is transferred nonlocally from the flow at viscous scales `⌫ to the magnetic field
at much smaller scales due to smoothness of the velocity at those small viscous scales.
We note, however, that such non-local transfer by ⇤ is mostly likely a hallmark of RT
turbulence, where rP is dominated by the largest scales in the system, and may not hold
in general variable density turbulence in which the pressure field is not smooth (Aluie
(2011)).

While the magnitude M⇤ decays at smaller scales both in 2D-RT and 3D-RT, e�ciency
�⇤ seems to have a much weaker decay at small scales. Figure S1(a) shows that �⇤ in
2D-RT is almost independent of scale, which is reinforced by scaling plots in figure S2(c).

In 3D-RT, figure S2(c) shows a very shallow scaling, with h�⇤i ⇠ k
�1/4
` .

To explain the decay of h⇤i at small scales we observed in 2D-RT (figure 7 in the
main text) and in 3D-RT (figure 8 in the main text), we assume that the e�ciency and
magnitude of ⇤ are statistically independent, h⇤i ⇠ h�⇤ihM⇤i (within the factor 1

⇢ ).
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(a) PDF of �⇧ in 2D-RT. Mean e�ciency equals
-0.018, -0.012, -0.0092 for ` = Lz/8, Lz/32,
Lz/128, respectively.

(b) PDF of M⇧ in 2D-RT. Mean magnitude
equals 0.064, 0.11, 0.093 for ` = Lz/8, Lz/32,
Lz/128, respectively.

(c) PDF of �⇧ in 3D-RT. Mean e�ciency equals
2E-3, 5E-3, 2.2E-3 for ` = Lz/8, Lz/32, Lz/128,
respectively.

(d) PDF of M⇧ in 3D-RT. Mean magnitude
equals 5.5E-2, 0.26, 0.75 for ` = Lz/8, Lz/32,
Lz/128, respectively.

Figure S3. PDFs of the e�ciency and magnitude of ⇧ at di↵erent scales from the 2D4096 and
3D1024 data at time bt = 4. The PDFs of e�ciency are on a linear-log plot, while the PDFs of
magnitude are on a log-log plot for clarity.

When this is combined the above observations on the scaling of each of M⇤ and �⇤, we

are able to explain the decay of h⇤i, which figure S2(d) shows to be ⇠ k
�2/3
` in 2D and

⇠ k
�1
` in 3D. Therefore, we can conclude from the foregoing discussion that the decay

in h⇤`i at smaller ` is primarily due to a decay in its magnitude rather than due to a
mis-alignment of rP ` and ⌧ `(⇢,u).
Unlike ⇤, which decays monotonically in the inertial range, deformation work ⇧ peaks

in the inertial range as it takes over the energy transfer process. PDFs of the e�ciency
of ⇧ (figures S3(a),(c)) indicate a profound di↵erence from ⇤. Whereas the PDFs of �⇤

in figures S2(a) and (c) peak around the maximum possible values, -1 and 1, �⇧ has a
highest probability around zero. This is consistent with the investigation by Ballouz &
Ouellette (2018), who concluded that ⇧ is ine�cient at transferring energy in constant-
density homogeneous turbulence (see also Fang & Ouellette (2016)). Thus, the ⇧ flux,
which transfers energy due to subscale stress acting against a larger-scale strain, is less
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(a) Isotropic filtering (b) Anisotropic filtering with G
x
` (c) Anisotropic filtering withG

z
`

Figure S4. Schematics of isotropic and anisotropic filtering, associated with scale `. Filtering
is performed in physical space to disentangle scales, without resorting to Fourier transforms.
Filtering wavenumbers k = (kx, kz) = (L/`x, L/`z) are only a proxy for length-scales, but
may be thought of as Fourier wavenumbers conceptually. (a) Isotropic (low-pass) filtering with
kernel G` retains scales within the shaded sphere in (scale) k-space, satisfying |k| 6 L/`. (b)
Anisotropic filtering with kernel Gx

` retains scales within the shaded slab in (scale) k-space,
satisfying |kx| 6 L/` without decomposing scales in the z-direction. (c) Anisotropic filtering
with kernel Gz

` retains scales within the shaded slab in (scale) k-space, satisfying |kz| 6 L/`

without decomposing scales in the x-direction.

e�cient than ⇤, which operates by the barotropic and baroclinic generation of vorticity
and strain (Lees & Aluie (2019); Zhao et al. (in preparation)).

B. ⇧ and ⇤ with anisotropic filters

In section 4 of the main text, we analyzed how the fluxes can lead to anisotropic
motion in di↵erent directions by directional splitting of the kinetic energy budget, which
we coarse-grained with isotropic kernels. In this section, we shall quantify the anisotropy
of length-scales energized by ⇧ and ⇤, through coarse-graining with anisotropic kernels.
We use the following ‘horizontal kernel’ and ‘vertical kernel’:

G
x
` (x) =

✓
6

⇡`2

◆1/2

e
� 6

`2
x2

, G
z
` (x) =

✓
6

⇡`2

◆1/2

e
� 6

`2
z2

which perform the filtering operation in only one direction. These filters only capture the
spectral information in the corresponding direction and ignore variations in the other
directions. We denote the fluxes calculated by these anisotropic kernels using notation
such as ⇧Gx or ⇤Gz . Note that unlike the ‘directionally split’ analysis presented earlier,
here the sum of anisotropically filtered fluxes does not equal the full flux, i.e., ⇤Gx +
⇤Gy + ⇤Gz 6= ⇤.
The essence of isotropic and anisotropic filtering is illustrated in figure S4 in k-

space, where filtering wavenumbers k = (kx, kz) = (L/`x, L/`z) are only a proxy for
length-scales, but can be conceptually associated with Fourier wavenumbers commonly
used in the community. Here, L is any characteristic large-scale to be used only as a
common reference in all directions to define filtering wavenumbers. Figure S4 depicts a
two-dimensional wavenumber space, with horizontal and vertical filtering wavenumbers
corresponding to scales in the x-direction and z-direction, respectively. Isotropic filtering
with kernel G` retains scales within the shaded sphere in k-space (figure 4(a)), satisfying
|k| 6 L/`. On the other hand, anisotropic filtering with kernel Gx

` , for example, retains
scales within the shaded slab in k-space (figure 4(b)), satisfying |kx| 6 L/` but does not
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(a) Anisotropic ⇤ in 2D (b) Anisotropic ⇧ in 2D

(c) Anisotropic ⇤ in 3D (d) Anisotropic ⇧ in 3D

Figure S5. Probing scale anisotropy of fluxes ⇤G and ⇧G using the 2D4096 and 3D1024 data
at bt = 4.0. Filtering wavenumber is k` = Lz/`. Plots are normalized by h✏inj + Pr · ui at the
corresponding time. Energy transfer across horizontal and vertical scales are shown alongside
energy transferred isotropically in scale space.

allow us to probe scales in the z-direction since it does not partition those scales. The
analysis generalizes to 3D in a straightforward way.
Mean anisotropic fluxes of the 2D4096 and 3D1024 data, at time bt = 4.0, are shown

in figure S5. For baropycnal work ⇤, both the 2D and 3D results shown in figures
5(a) and 5(c) indicate that h⇤Gxi is larger than h⇤Gz i. This implies that most of the
potential energy is being transferred to horizontal scales, although nonzero transfer is
also creating flow variation in the vertical direction. The tendency of baropycnal transfer
in energizing small-scales along the x-direction is consistent with our understanding of
RT instability during the linear stage when potential energy feeds perturbations that
vary in the horizontal direction. Figures 5(a),5(c) indicate that baropycnal transfer from
potential energy at later times, when the flow becomes nonlinear, also participates in
the creation of vertical scales. This is consistent with the association of baropycnal work
with vorticity and strain creation (Lees & Aluie (2019)), which necessarily involve small-
scales in the vertical direction. Nevertheless, horizontal scale creation still dominates at
late times, with h⇤Gxi > h⇤Gz i at all scales. Note that in 3D, we have h⇤Gxi ⇡ h⇤Gy i
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in figure 5(c), indicating that horizontal scales are being energized isotropically by ⇤, as
expected.

Probing anisotropy of deformation work ⇧, we can observe significant di↵erences
between the 2D case, shown in figure 5(b), and the 3D case, shown in figure 5(d). In 2D,
the mean value of ⇧ calculated from isotropic kernel is negative, and so is the anisotropic
⇧Gx . On the other hand, mean ⇧Gz attains positive values over a certain range of scales.
Since⇧ = �⇢@jeuie⌧(ui, uj) is primarily determined by the velocity fields, we shall focus on
the characteristics of velocity fields in RT evolution. The positive h⇧Gz i measures energy
transfer across vertical scales, which goes into sustaining the ‘mixing fronts,’ which are
the two envelopes enclosing the mixing layer in RT turbulence. We verified this from
visualizations of ⇧Gz (not shown here). This is similar to the downscale energy transfer
that forms and sustains the shock front in a 1D Burgers flow. In our RT flow, the velocity
profile along the z-axis comprises of a vertical flow inside the mixing layer pushing against
a more quiescent fluid outside. Such fronts necessarily involve small vertical scales that
need to be constantly replenished by ⇧, otherwise the front would broaden. We find that
inside the mixing layer (not shown), away from the fronts, ⇧Gz < 0, transferring net
energy upscale as in a homogeneous 2D flow. However, the contribution from the front
regions is stronger such that overall h⇧Gz i > 0. Despite being positive, h⇧Gz i is much
smaller than the net upscale transfer in the horizontal direction measured by h⇧Gxi in
figure 5(b), which dominates the cross-scale transfer when we treat all directions equally
by using isotropic kernels to measure h⇧i in figure 5(b). In the 3D-RT flow, we see in
figure 5(d) that ⇧Gx , ⇧Gy , and ⇧Gz are all positive, transferring energy downscale. We
find that ⇧Gz peaks at slightly larger scales and again plays a role in the formation of
the mixing fronts as in 2D, while h⇧Gxi ⇡ h⇧Gy i > 0, indicating isotropic downscale
transfer in the horizontal scales.

We also note that h⇧Gz i > h⇧Gxi at all scales, indicating that the ‘mixing front’
propagation plays an important role in the downscale kinetic energy transfer. This aspect
of energy transfer was missing in previous studies relying on FFTs in the horizontal while
neglecting vertical scales.

C. Filtering Spectra of Kinetic Energy

Here, we compare the ‘filtering’ spectra using three di↵erent scale-decompositions to
define kinetic energy, following Zhao & Aluie (2018). In variable density flows, scale
decomposition is not as straightforward as in constant density flows. One possible
decomposition is to define large-scale kinetic energy as ⇢`|u`|2/2, which has been used
in many studies (e.g. Chassaing (1985); Bodony & Lele (2005); Burton (2011); Karimi &
Girimaji (2017)). Another possibility is to define large-scale kinetic energy as |(p⇢u)

`
|2/2,

which has also been used extensively in compressible turbulence studies (e.g. Kida &
Orszag (1990); Cook & Zhou (2002); Wang et al. (2013); Grete et al. (2017)). A third
is based on the Favre decomposition (Hesselberg (1926); Favre (1958)), which we adopt
in this work, and uses ⇢`|eu`|2/2 as the definition for large-scale kinetic energy, where
eu`(x) = ⇢u`/⇢`.

Zhao & Aluie (2018) demonstrated numerically that these three di↵erent quantities,
all of which have units of energy, are governed by di↵erent dynamics. Specifically, it was
shown that for large `, viscous dissipation is negligible for the Favre decomposition but
significant for the other two in a variety of flows; normal 1D shock, 2D-RT and 3D-RT,
subject to a dynamic viscosity that is either constant or temperature-dependent.
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Following Sadek & Aluie (2018), the filtering spectra for the three definitions are:

EF (k`) ⌘
d

dk`
h⇢`|eu`(x)|2i/2 (S-3)

EC(k`) ⌘
d

dk`
h⇢`|u`(x)|2i/2 (S-4)

EK(k`) ⌘
d

dk`
h|(p⇢u)`(x)|

2i/2 (S-5)

where k` = L/`, L is the domain size of interest, ` is the scale we are probing, and h·i
stands for spatial averaging. Subscript ‘F’ stands for Favre, while ‘C’ and ‘K’ denote the
lead authors of papers in which those definitions, to our best knowledge, first appeared
(Chassaing (1985); Kida & Orszag (1990)).

Figure S6 compares these three spectra using the high Atwood RT simulations in 2D
and 3D. We find discernible di↵erences from the 2D2048high simulation but not from
the 3D512high data. We suspect the lack of di↵erences from the 3D512high data may be
due to an enhanced microscopic mixing between the heavy and light fluids at late times.
We observe (not shown) that di↵erences among the definitions using the 3D512high data
were relatively larger at earlier times, albeit still small in absolute terms, especially when
compared to those from the 2D2048high data. Microscopic mixing in 2D-RT is much
smaller than in 3D-RT as observed in previous studies (e.g. Cabot 2006), due to weaker
small inertial scales as we discussed in the main text above.

With A = 0.8, our flows have an initial density ratio of ⇢h/⇢l = 9. Achieving higher
ratios in a well-resolved turbulence simulation is computationally challenging, especially
in 3D (e.g. Livescu & Ristorcelli (2008)). Yet, many flows of interest have much larger
density ratios, reaching of up to 600 laboratory flow experiments (Read (1984); Dimonte
& Schneider (2000)), typically exceeding 104 � 105 in laboratory fusion plasmas (e.g.
Craxton et al. (2015); Yan et al. (2016); Zhang et al. (2020)), and ranging from 106 to
1020 in molecular clouds in the interstellar medium (e.g. Kritsuk et al. (2007); Federrath
et al. (2010); Pan et al. (2016)). The most ubiquitous terrestrial two-fluid mixing is
between air and water which have a density ratio of 1000.

Since we are testing possible di↵erences among the definitions, which can be applied
to any density and velocity fields regardless of their dynamical origin, we synthetically
increase the density contrast Zhao & Aluie (2018) in the flows we are analyzing by
taking powers of the density, A ⇢

8(x), as a post-processing step, then normalizing the
resultant field such that the total mass in the domain is the same as in the original flow,
h⇢i = A h⇢8i. Note that this is not based on physical grounds, but serves to highlight
di↵erences among the three decompositions under higher density contrasts.

Figure S6 (right column) compares these three spectra using A ⇢
8(x) as a density

field and original velocity from the high Atwood RT simulations in 2D and 3D. We now
find more pronounced di↵erences among the three decompositions, especially from the
2D2048high data; EC(k`) from equation (S-4) decays rapidly at high k`, while EK(k`)
from equation (S-5) becomes shallower than the Favre-based spectrum EF (k`) (equation
(S-3)), scaling similar to k

�5/3 even in 2D.

The purpose of Figure S6 is to demonstrate that filtering spectra based on di↵erent
kinetic energy decompositions can di↵er. It is not our intention here to argue which is
more physical, which was the subject of previous studies (Zhao & Aluie (2018); Aluie
(2013)).
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Figure S6. Filtering spectra of kinetic energy using three di↵erent scale-decompositions (eqs.
(S-3)-(S-5)). Top and bottom rows use 2D-RT and 3D-RT data, respectively. Left column uses
the raw density field, ⇢. Right column usesq ⇢

8 (normalized to conserve mass) to highlight
di↵erences among the definitions under an increased density contrast. Data from 2D2048high
was at t̂ = 4.4. Data from 3D512high was at t̂ = 4.0.

D. 2D-RT simulation with same initial condition as in 3D1024

For verification purpose, we performed two additional 2D turbulent RT simulations (see
Table 1); run 2D1024 of grid size 1024⇥2048 and run 2D2048 on a 2048⇥4096 grid. Both
have the same initial perturbations as in 3D1024. Specifically, the vertical velocity field
is perturbed at the interface in wavenumber space within the wavenumber annulus k 2
[32, 128], with amplitude proportional to e

� 1
c |k

2
x�802|, where c ⇡ 22.63 is a normalization

constant to further limit the range of e↵ectively perturbed wavenumber. We shall see
that the analysis performed on these results are consistent with those obtained from run
2D4096 in the main text.
Figure S7 shows the mixing width h(t) versus time, with ↵ = 0.034 for 2D1024, and

↵ = 0.037 for 2D2048, which are similar to 2D4096 in figure 3 with ↵ = 0.036. Figure
S8 shows the corresponding instantaneous and overall kinetic energy budgets, which is
similar to the 2D4096 case shown in figure 4(a) and 4(b). The KE budget as a function
of scale is shown in figure S9, which resembles the 2D4096 result in figure 7 of the main
text. The temporal self-similarity of the new 2D1024 and 2D2048 RT fluxes also holds,
and is shown in figure S10, similar to those in the 2D4096 case in figure 11 of the main
text. All the analysis presented here is consistent with the results from run 2D4096 in
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Figure S7. Similar to figure 3 of the main text, the square root of mixing width
p

h(t)
versus time for the new 2D-RT simulations. Left figure is for 2D1024, with ↵ = 0.034, and
right figure is for 2D2048, with ↵ = 0.037. The ‘+’ markers correspond to dimensionless time
bt = t/

q
Lx
Ag = 2, 3, 4. Inset: the compensated plot ↵ = h(t)

Agt2
versus time, in which the horizontal

lines correspond to the ↵ value obtained by linear fit.

(a) 2D1024 instantaneous budget (b) 2D1024 overall budget

(c) 2D2048 instantaneous budget (d) 2D2048 overall budget

Figure S8. Temporal evolution of kinetic energy budget, and overall energy balance for
2D1024 in (a)-(b), and 2D2048 in (c)-(d), similar to figure 4(a) and 4(b) of the main text.
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Figure S9. Similar to figure 7 of the main text, mean kinetic energy budget as a function of
scale in 2D at dimensionless time bt = 4.0. Left figure is for 2D1024 and right figure for 2D2048.
The plots are normalized by h✏inj + Pr · ui, the available mean source of kinetic energy.

(a) (b) (c)

(d) (e) (f)

Figure S10. Similar to figure 11 of the main text, the temporal self-similarity of turbulent RT
fluxes for the new 2D-RT simulations. Panels (a)-(c) are 2D1024 results, and panels (d)-(f) are
2D2048 results. Panels (a), (d) plot length scale `⇧,peak associated with the peak of ⇧ versus

dimensionless time bt. Panels (b), (e) show rescaled h b⇧i in equation (3.7). Panels (c), (f) show

rescaled h b⇤i.

the main text, implying that the slight di↵erence in initial conditions between 2D4096
and 3D1024 does not a↵ect our conclusions.

E. Another form of kinetic energy budget

In the compressible turbulence LES modeling literature, another formulation of the
Favre filtered large scale kinetic energy budget, similar to equation (3.1) of the main
text, is often used. In this formulation, pressure dilatation is lumped with the ⇤ term by
the relation:

�⇤` + P `r · u` = Pr · eu` +r ·
⇥
P (u` � eu`)

⇤
(S-6)
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using the identity (Aluie (2011))

eu` = u+
⌧(⇢,u)

⇢

Thus, the filtered large and small scale kinetic energy equations, and the filtered internal
energy equation are:

@t⇢̄`
|eu`|2

2
+r · [· · · ] = P̄`r · eu` + · · ·

@t
⇢̄`e⌧`(ui, ui)

2
+r · [· · · ] = (Pr · u� P̄r · eu) + · · ·

@t⇢e` +r · [· · · ] = �P̄`r · eu` � (Pr · u` � P̄`r · eu`) + · · ·

(S-7)

the omitted terms are similar to those in our formulation of the coarse-grained budgets in
equation (3.1) of the main text. Many previous works on compressible turbulence adopt
the framework of equation (S-7), see Lele (1994) and the references therein. There are a
few exceptions, such as in Huang et al. (1995), in which they preferred to have a separate
⇤ based on modelling considerations that density weighted decomposition should only
be applied to the convective terms, and also in (Aluie (2011, 2013); Wang et al. (2013);
Eyink & Drivas (2018)) where it was argued that ⇤ and P̄r·ū are fundamentally di↵erent
from a physics standpoint since the former has contributions from scales both larger and
smaller than ` and represents the interaction between di↵erent scales, while the latter
only involves large scale quantities.
We remark that these two formulations, equation (3.1) of the main text and equation

(S-7), are mathematically equivalent but represents di↵erent interpretations of the scale
processes, which is illustrated schematically in figure S11 (in which potential energy and
dissipation have been omitted for clarity). In figure S11, there are three channels for
energy transfer: i) between internal energy (IE) and large scale kinetic energy (KE), ii)
between IE and small scale KE, and iii) between large and small scale KE. For each
channel, the energy transfer is di↵erent between the two interpretations, but the total
energy transferred between IE and KE (when summing both large scales and small scales)
is the same and equals to Pr · u, as can be readily checked from the sum of the values
associated with the arrows in both figures. However, an important distinction is that in
the second formulation in figure 11(b), mean pressure dilatation acts over a much wider
range of scales, preventing a simple understanding of the flow in terms of inertial range
dynamics. This is illustrated with solid arrows in coupling internal energy to KE at scales
both large and small, which can hinder the unraveling of inertial range dynamics. We
thus advocate for using our formulation in equation (3.1) of the main text.
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