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S1. Base flow in regions I and II
According to the method of matched asymptotic expansions, the composite solution

reads
U = Uin + Uout −Ucom, (S1.1)

where the subscripts in, out, and com stand for inner, outer, and common, respectively,
and U is defined in (2.8). The common part is defined as

Ucom = lim
y→0

Uout = lim
η→∞

Uin, (S1.2)

where, for the lower channel half,

η = y

(
Rλ
2x

)1/2
= O(1) (S1.3)

is the scaled wall-normal coordinate of the inner solution. As the Reynolds number is
large, the inner solution near the inlet corresponds to the Blasius flow (Wilson 1970;
Rubin et al. 1977; Duck 2005; Buffat et al. 2014). It satisfies

F ′′′ + FF ′′ = 0, (S1.4)

where the prime indicates differentiation with respect to η. The boundary conditions for
equation (S1.4) are F (0) = 0, F ′(0) = 0, and F ′ → 1 as η → ∞. The inner base flow
reads

U in = F ′, V in = ηF ′ − F
(2xRλ)1/2 . (S1.5)

As Rλ � 1, the base-flow viscous effects are negligible in the channel core near
the entrance, which is consistent with the use of the boundary-layer approximation of
the Navier-Stokes equations. For low and moderate bulk Reynolds numbers, Wang &
Longwell (1964), Van Dyke (1969), and Morihara & Cheng (1973) concluded that the
vorticity and wall-normal pressure gradients at the entrance are indeed not negligible
because they result from the upstream flow influence. However, as the Reynolds number
increases, the core flow is not affected by the presence of the walls at leading order. As
our work focuses on cases for which the Reynolds numbers are about ten times larger
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than in the full Navier-Stokes study by Wang & Longwell (1964), the use of potential
flow theory in the channel core and the confinement of the viscous effects near the wall
are justified (Rubin et al. 1977). In §S2, we compare our results with those obtained via
direct numerical simulations (DNS) to confirm the validity of this assumption.

In the inviscid core, the outer flow is described by an inviscid streamfunction ψ,

ψ(x, y) = y +R
−1/2
λ ψ2(x, y), (S1.6)

i.e., Uout = ∂ψ/∂y and V out = −∂ψ/∂x. The leading-order term y in (S1.6) defines the
uniform streamwise flow. The second-order streamfunction ψ2 defines the flow due to the
channel confinement and to the Blasius boundary layers developing on the channel walls,
and satisfies

∇2ψ2 = 0, (S1.7)
subject to

ψ2 = 0 at y = 0, 2h, x < 0, (S1.8a)
ψ2 = ±β

√
2x at y = 0 (− sign), 2h (+ sign), x > 0, (S1.8b)

where β = limη→∞ (η − F ) = 1.217 . . . The boundary conditions (S1.8a) is obtained as
follows. The base flow is uniform and streamwise only as x → −∞ and, as it is not
influenced by the presence of the channel walls, no wall-normal base-flow velocity occurs
as x → −∞. Also, no wall-normal base-flow velocity occurs along the horizontal lines
y = 0, 2h for x < 0 because there is no preferential wall-normal flow direction as the
base flow approaches the channel walls. Therefore, V out = 0 at y = 0, 2h for x < 0, i.e.,
∂ψ/∂x = ∂ψ2/∂x = 0. As we choose ψ2 = 0 as x → −∞, by integrating ∂ψ2/∂x = 0
from x → −∞ for y = 0, 2h, it follows that ψ2 = 0 along y = 0, 2h for x < 0. The
boundary conditions (S1.8b) are obtained by asymptotic matching, i.e., the wall-normal
component of the outer velocity must match the outer limit of the base-flow wall-normal
velocity of the boundary layer. For the lower-half boundary layer,

V com = lim
y→0

V out = − 1
R

1/2
λ

∂ψ2

∂x

∣∣∣∣
y=0

= lim
η→∞

V in = lim
η→∞

ηF ′ − F
(2xRλ)1/2 = β

(2xRλ)1/2 .

(S1.9)
It follows that

ψ2(x) = −β
∫

(2x)−1/2dx = −β
√

2x, (S1.10)

at y = 0 for x > 0. The condition ψ2(x) = β
√

2x at y = 2h in (S1.8b) follows from
the antisymmetry of the wall-normal velocity. The solution to (S1.7) together with the
boundary conditions (S1.8) is found by separation of variables. There exists a full analogy
with a heat conduction problem and therefore we refer to page 166 in Carslaw & Jaeger
(1959). The solution reads

ψ2(x, y) = 1
4h sin

(πy
2h

)∫ ∞
0

−β
√

2σdσ
cosh[π(x− σ)/2h]− cos(πy/2h)+

1
4h sin

(πy
2h

)∫ ∞
0

β
√

2σdσ
cosh[π(x− σ)/2h] + cos(πy/2h) .

(S1.11)
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The velocity components in the lower channel half read

Uout =∂ψ

∂y
= 1 +R

−1/2
λ

π

2h2

{
cos
(πy
h

)∫ ∞
0

−β
√

2σdσ
cosh [π (x− σ) /h]− cos (πy/h)+

sin2
(πy
h

)∫ ∞
0

β
√

2σdσ
{cosh [π (x− σ) /h]− cos (πy/h)}2

}
,

(S1.12)

V out =− ∂ψ

∂x
= −R−1/2

λ

π

2h2 sin
(πy
h

)∫ ∞
0

sinh [π(x− σ)/h]β
√

2σdσ
{cosh [π (x− σ) /h]− cos (πy/h)}2 . (S1.13)

The integrals in (S1.11), (S1.12) and (S1.13) are computed using the Cavalieri-Simpson
rule. The computation of (S1.11) is validated by numerically solving (S1.7) with (S1.8)
by use of the Gauss-Seidel method.

The common part of the wall-normal velocity is computed in (S1.9) and the common
part of the streamwise velocity in the lower channel half is

U com = lim
y→0

Uout = lim
η→∞

U in = 1 +R
−1/2
λ

π

2h2

∫ ∞
0

−β
√

2σdσ
cosh [π (x− σ) /h]− 1 . (S1.14)

The composite solution of the streamwise velocity in the lower channel half is

U(x, y) = U =F ′(η(x, y)) +R
−1/2
λ

π

2h2

{
cos
(πy
h

)∫ ∞
0

−β
√

2σdσ
cosh [π (x− σ) /h]− cos (πy/h)+

sin2
(πy
h

)∫ ∞
0

β
√

2σdσ
{cosh [π (x− σ) /h]− cos (πy/h)}2

}
−

R
−1/2
λ

π

2h2

∫ ∞
0

−β
√

2σdσ
cosh [π (x− σ) /h]− 1 .

(S1.15)

The streamwise velocity in the upper channel half is symmetric with respect to the
centreline. In the composite solution (S1.15), the O

(
R
−1/2
λ

)
term in the boundary

layer, driven by the O
(
R
−1/2
λ

)
term in the last line of (S1.15), is not considered, and

therefore the composite solution (S1.15) is of leading-order accuracy and not accurate
up to O

(
R
−1/2
λ

)
.

The composite solution of the wall-normal velocity V , defined in (2.8), in the lower
channel half is

V (x, y) = k−1
x V =ηF ′(η(x, y))− F (η(x, y))

kx (2xRλ)1/2 −

R
−1/2
λ

π

2h2kx
sin
(πy
h

)∫ ∞
0

sinh [π(x− σ)/h]β
√

2σdσ
{cosh [π (x− σ) /h]− cos (πy/h)}2−

β

kx (2xRλ)1/2 .

(S1.16)

The wall-normal velocity in the upper channel half is antisymmetric with respect to the
centreline.

Figure S1 shows the inner and outer solutions, the common part, and the composite
solution of the base-flow velocity components for Rλ = 500 and 2000 at x = 0.05. The
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Figure S1: Composite solutions for the base-flow streamwise velocity U (top) and wall-
normal velocity V (bottom) at x = 0.05 for two Reynolds numbers.

composite base-flow streamwise velocity, depicted in the top graphs of figure S1, agrees
well with the inner Blasius solution across the channel height as the acceleration in
the channel core is still small at this x location. The increase of inviscid streamwise
velocity balances the decrease within the viscous region to conserve the mass flow
rate. The displacement effect of the Blasius boundary layers, given by (S1.9), causes
a small streamwise pressure gradient related to the dependence of the displacement
streamfunction ψ2 on the x coordinate, which is negligible at leading order in the near-
wall viscous regions. This pressure-gradient effect is weaker than in the case by Xu et al.
(2020), where the pressure gradient is more intense and non-uniform at leading order
from the proximity of the confined region because induced by a converging or divergent
channel. In our case, the pressure gradient instead produces a leading-order effect further
downstream in region V. The inviscid streamwise velocity is larger than unity near the
wall because it accelerates along x to conserve the mass flow rate as the wall-normal
velocity decreases from its boundary-layer blowing value as the centreline is approached.
This acceleration gives rise to the local near-wall peak in the U profile, also reported in
Sparrow et al. (1964), Panton (2013), and Alizard et al. (2018). The peak occurs because
the inviscid streamwise velocity is larger than the viscous streamwise velocity deficit of
the boundary layer.

The base-flow wall-normal velocity, shown in the bottom graphs of figure S1, agrees well
with the viscous solution only in the proximity of the wall, while the two fail to overlap
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in the inviscid core, where the composite profile coincides with the outer solution. The
composite solution shows a distinct peak located near the wall. As the Reynolds number
increases and the viscous effects become more confined near the surface, the peak moves
closer to the wall, while it decreases in amplitude and approaches the outer value more
closely. The velocity is not exactly zero at the wall. This small slip velocity decreases
while the Reynolds number increases as O

(
R
−1/2
λ

)
and induces a viscous layer at the

next order, which we do not compute.

S2. Base flow in regions V and VI
The inset of figure S2 (top) shows the centreline velocity U cen = U(x, y = h) computed

through the inviscid solution (S1.12) (dash-dotted line) and the boundary-layer equations
(2.11)-(2.10) (solid line). The inviscid solution is not zero in a small region upstream
of the channel mouth as U cen matches the uniform velocity as x→−∞. The velocity
increases as the channel entrance is approached because of the pressure gradient due
to the channel confinement. Inside the channel and near the entrance, the centreline
velocity U cen can be approximated well by the inviscid solution in an overlap region, as
evidenced by the inviscid and the viscous solutions showing excellent agreement. However,
as the streamfunction formulation in §S1 does not take into account the viscous effects
or the base-flow pressure gradient at leading order, the agreement between the inviscid
velocity and the viscous velocity computed via the boundary-layer equations (2.11)-
(2.10) inevitably deteriorates downstream, where the base-flow pressure gradient is fully
influential. The viscous U cen then becomes smaller than the inviscid U cen because in the
former case the core flow is less restricted by the boundary layers over the channel walls as
these grow less than in the latter case because they are influenced by the favourable base-
flow pressure gradient. The viscous solution is not valid in the very proximity of x = 0
because the flow cannot be described by the boundary-layer approximation. Therefore, in
order to start the downstream marching procedure, the initial position is selected to be in
the range where the inviscid and viscous profiles overlap, the extent of which depends on
the Reynolds number. As the Reynolds number increases, this matching region becomes
larger as the channel confinement and the pressure gradient become less important.

The base-flow streamwise and wall-normal velocity profiles across the channel are
shown in figure S2 for various streamwise positions. The small-x asymptotic profiles
(S1.1) are also shown (dashed lines). The flow field approaches the fully-developed regime
as it develops downstream: the base-flow streamwise velocity evolves to the parabolic
Poiseuille profile, while the wall-normal velocity decreases to zero.

The base-flow streamwise velocity is shown in figure S3 as a function of the streamwise
position at various y locations and is compared with data from the literature. There is
excellent agreement with the data by Alizard et al. (2018) (empty squares) obtained by
DNS of the full Navier-Stokes equations, thereby validating our boundary-layer approx-
imation even in the proximity of the channel mouth. The match with the boundary-
layer computations by Bodoia & Osterle (1962) (white circles) and the series solution by
Sparrow et al. (1964) (black circles) is also very good, although near the entrance a slight
disagreement is observed with Sparrow et al. (1964)’s centreline data and with Bodoia
& Osterle (1962)’s data near the wall. The mismatch with the latter could be due to
an insufficient numerical resolution due to the high near-wall velocity gradients in the
proximity of the channel mouth. The data point by Schlichting (1934) (blue + symbol
at x/(h2Rλ) = 0.016), computed by a composite solution of a viscous-flow series and
an inviscid-core solution, shows poor agreement because, as pointed out by Bodoia &
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Figure S2: Streamwise (top) and wall-normal (bottom) base-flow velocity profiles. The
solid lines denote the solutions at x/(h2Rλ) = 0.003, 0.012, 0.03, 0.08, 0.4 obtained by
numerically solving the boundary-layer equations (2.11)-(2.10). The dashed lines show
the composite solution of the streamwise velocity (S1.15) (top) and of the wall-normal
velocity (S1.16) (bottom) at x/(h2Rλ) = 0.0004. Inset of top graph: centreline base-flow
velocity U cen as a function of the streamwise coordinate for Rλ = 75. The dash-dotted
line represents the inviscid solution (S1.15) and the solid line indicates the numerical
solution of (2.11)-(2.10).

Osterle (1962), the second derivative of the streamwise velocity, neglected by Schlichting
(1934) in the outer solution, has a non-zero value. Collins & Schowalter (1962) improved
Schlichting (1934)’s theory by including more terms in the approximation to obtain a
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Figure S3: Base-flow streamwise velocity U at different y/h locations as a function of the
streamwise coordinate, computed by numerically solving the boundary-layer equations
(2.11)-(2.10) (solid lines). Symbols: DNS data Alizard et al. (2018) (empty squares),
boundary-layer data by Bodoia & Osterle (1962) (white circles), series solution by
Sparrow et al. (1964) (black circles), composite solution by Schlichting (1934) (blue
+ symbol), and improved composite solution by Collins & Schowalter (1962) (red ×
symbol).

more accurate result, which matches ours very well (red × symbol at x/(h2Rλ) = 0.016).

The downstream adjustment of the pressure gradient can be monitored through the
correction pressure function

K
(

x

h2Rλ

)
= |∆P

∗|
ρ∗U∗2∞

− 3ν∗x∗
h∗2U∗∞

= |∆P | − 3x
h2Rλ

, (S2.1)

which measures the deviation of the base-flow pressure, defined in (2.8), from the fully-
developed Poiseuille value. Our computed fully-developed value is K∞ = limx→∞K(x) =
0.336. As shown in figure S4 and consistently with the discussion about the computation
of U cen, the K∞ value computed by Schlichting (1934) (blue + symbol) does not match any
other, while Collins & Schowalter (1962)’s value (red × symbol) is in excellent agreement
with ours and with Bodoia & Osterle (1962)’s (white points), while being only slightly
lower than Lundgren et al. (1964)’s (orange square). Our data perfectly match Bodoia
& Osterle (1962)’s points and are only marginally higher than Sparrow et al. (1964)’s
(black circles). The comparison with the experimental data by Beavers et al. (1970) is
also satisfactory (white circles with + symbol), especially when the fully-developed value
is approached. This agreement is expected as, arguably, the uncertainty is larger near the
channel mouth where the pressure and velocity gradients are largest. Their aspect ratio of
51:1 is almost certainly sufficiently large as their pressure data for the channel with aspect
ratio 20:1 leads to values within the experimental uncertainty. The K values by Asai &
Floryan (2004) (white circles with × symbol), obtained from the experimental pressure
data in their figure 1 measured in a channel of aspect ratio 27.6:1, are lower than the
numerical data. This mismatch could be due to differences in the channel mouth, which
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Figure S4: Correction pressure function K, defined in (S2.1), as a function of the
streamwise coordinate, computed by numerically solving the boundary-layer equations
(2.11)-(2.10) (solid line). Symbols: series solution by Lundgren et al. (1964) (orange
square), experimental data by Beavers et al. (1970) (white circles with + symbol) and
by Asai & Floryan (2004) (white circles with × symbol). The legend for the black and
white circles, the blue + symbol, and the red × symbol is the same as in figure S3.

are not described in Asai & Floryan (2004) because their focus was further downstream,
near the fully-developed region. Their asymptotic value, K∞ = 0.23, computed by fitting
their large-x formula K = K∞ + C exp(−ξx) to the experimental data (where C is a
constant and ξ is an eigenvalue), is much lower than our numerical value.

We now define boundary-layer thicknesses to quantify the diffusion of the viscous effects
as the flow develops downstream. They are defined as

δk = ∆k

∫ h

0

[
1− U(x, y)

U cen(x)

]
dy, (S2.2)

where k = h identifies the boundary thickness that matches the half channel height
in the fully-developed downstream limit (∆h = 3 is obtained by substituting δh = h,
limx→∞ U(x, y) = 3y(2−y/h)/2h, and limx→∞ U cen = 3/2 into (S2.2)) and k = LWG,CH
denotes the boundary thickness that matches the one employed by LWG99 as x →
0, i.e., δLWG = (2x/Rλ)1/2 (∆LWG,CH = β−1 = 0.822 is obtained by substituting (S1.15)
into (S2.2)). Figure S5 (left) shows the boundary-layer thicknesses as functions of the
streamwise coordinate. The thickness δLWG,CH in our channel-flow case is thinner than the
corresponding Blasius-flow δLWG because of the accelerating core caused by the favourable
pressure gradient.

We also quantify the entry length, i.e., the distance from the channel mouth where re-
gion V ends and the fully-developed region VI starts. The entry length is typically defined
by the streamwise location where U cen reaches 99% of its fully-developed value. We can
first use equation (23) in Durst et al. (2005), i.e., xe,u = 2h

[
0.4787 + (2Ce,uhRλ)1.6]1/1.6,

where Ce,u = 0.0442. As we operate under the assumption Rλ � 1, Durst et al. (2005)’s
equation reduces to xe,u = 4Ce,uh2Rλ, which is consistent with the scaling adopted in
figure S3. We compute Ce,u = 0.043, which is within the uncertainty range provided by
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Figure S5: Left: Boundary-layer thicknesses δh, δLWG, and δLWG,CH as functions of the
streamwise coordinate. Right: Second derivative of the streamwise velocity at the
centreline and average error E , defined in the text and measuring the deviation of the U
profile from the Poiseuille solution, as functions of the streamwise coordinate.

Durst et al. (2005). We also quantify the entrance region as xe,pres = 4Ce,presh2Rλ,
i.e., the streamwise distance from the channel mouth where K = 0.99K∞, that is,
where the pressure gradient has reached its fully developed constant value. We compute
Ce,pres = 0.054.

Crabtree, Küchemann, and Sowerby on page 440 of Rosenhead (1963) remark that
in a pipe entrance flow:“...the whole of the fluid across a section becomes influenced by
viscosity before the parabolic distribution is reached.” We can examine this statement in
our case of channel flow, although they do not specify how the diffusion of viscous effects
is defined mathematically. The flow development to the Poiseuille parabolic profile is
already quantified by the entry length xe,u, based on the downstream evolution of U cen,
but we also further monitor it by an adjustment length xe,pois = 4Ce,poish2Rλ, defined
as the streamwise location where the average difference between the streamwise velocity
and the Poiseuille velocity, i.e., E (x) = (1/h)

∫ h
0 |U(x, y)− 3y(2− y/h)/2h|dy (shown by

the dashed line in figure S5, right), has decayed to 1% of limx→0 E = 1. We find Ce,pois =
0.038, i.e., comparable with Ce,u. The diffusion of viscous effects can be quantified by two
adjustment lengths. We first obtain xe,u2 = 4Ce,u2h

2Rλ, i.e., the downstream distance
from the channel mouth where the second derivative of the streamwise velocity with
respect to the wall-normal direction at the centreline, ∂2U/∂y2|y=h (shown by the solid
line in figure S5, right), is 99% of its fully-developed value. We choose this quantity
because it represents wall-normal viscous effects and the centreline is the last wall-normal
location where the viscous diffusion from the wall is felt. We compute Ce,u2 = 0.072. We
then find xe,δ = 4Ce,δh2Rλ = 0.052, i.e., the downstream distance from the entrance
where δh=0.99h. Table S1 summarizes the computed entrance lengths.

We therefore find that Ce,u2, Ce,δ>Ce,u, Ce,pois, i.e., the flow becomes viscous for the
whole wall-normal extent of the channel slightly downstream from where the flow can be
considered in good agreement with the Poiseuille profile. Therefore, there does not exist
a distinct streamwise region along which viscous diffusion affects the whole wall-normal
extent of the channel and the velocity profile has not yet developed to the parabolic
profile. It remains to be verified whether this streamwise region exists in a pipe flow, as
stated by Crabtree, Küchemann, and Sowerby. The adjustment length xe,u2, based on
the second wall-normal derivative of the streamwise velocity at the centreline, is the most
conservative amongst the four lengths, as also visually evident in figure S5 (right).
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Criterion dP/dx E Up(y = h) δh
∂2U
∂y2

∣∣∣
y=h

Parameter Ce,pres Ce,pois Ce,u Ce,δ Ce,u2

0.054 0.038 0.043 0.052 0.072

Entry length xe,pres/(h2Rλ) xe,pois/(h2Rλ) xe,u/(h2Rλ) xe,δ/(h2Rλ) xe,u2/(h2Rλ)

0.216 0.152 0.172 0.208 0.288

Table S1: Entrance lengths according to definitions presented in the text.
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