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1. Validations of the numerical methods about the MHD module
implemented in Gerris

The DNS results discussed in this manuscript were obtained by using the Gerris code
implemented with a MHD module developed by the same authors (Zhang & Ni (2014a,b)).
As this code and its ability in simulating the isolated bubble rising exposed to an external
MF have been documented numerously in some published papers (Zhang & Ni (2014c);
Zhang et al. (2016)), we only describe more details about the specific aspects in direct
relation with the present study.

The confinement effects of the computational domain on the bubble interactions are
investigated first. The size of the cross - section is set as 10D × 10D, 20D × 20D and
30D × 30D, respectively, while the height of the domain maintains at 60D. By focusing
on the case of a bubble pair of D = 3 mm, their rising paths, and the time histories
of the rising velocities and collision velocities are displayed in figure 1. It is witnessed
that the numerical results converge at a domain width of Lx > 20D, while the bouncing-
separation process is affected if the lateral walls are separated by a smaller distance of
10D. As a consequence, the computational domain is set at 20D×20D×60D throughout
the present study.

Then we investigate the capability of the topology based AMR in resolving the thin
film when the two bubbles collide, the bubble pair of D = 2.6 mm are investigated.
Starting from a refinement of ∆bubble = D/64 in vicinity of the bubble interface, different
strategies are adopted to further refine the meshes inside the thin film, given that ∆film =
∆bubble/2

n with n denoting 0, 1, 2, et al.. Note that we suppose the two bubbles to coalesce
numerically if they cannot bounce off at a refinement up to n = 4. The snapshots of the
bubble shapes are displayed in figure 2(a), in which we observe the two bubbles coalesce
at n = 0, 1 and 2 that a higher refinement delays the coalescence, and ultimately, they
bounce off at n = 3 before reaching the prescribed maximum n = 4. As a consequence, the
results indicate that the topology based AMR can delay or even prevent the numerical
coalescence effectively. Then the distributions of the adaptive grid in vicinity of the
interstitial film at the pre-coalescence and pre-bounce stages are presented in figure 2(b),
it clearly illustrates that with an increased n, finer grids are automatically generated
inside the gap between the two bubbles.
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Figure 1: Confinement effects of the computational domain on the bubble interactions
corresponding to D = 3mm. (a) Rising path; (b) rising velocity; (c) collision velocity.
Red line corresponds to a domain width of 10D, blue line is 20D and green line is 40D,
while the domain height maintains at 60D.

Figure 2: The capability of the topology based AMR in resolving the thin film between
the two bubbles corresponding to a size of D = 2.6mm. (a) Snapshots of the bubble
shapes under different spatial resolutions; (b) distribution of the mesh inside the thin
film when the two bubbles are about to collide. In (a)(b), the value of n indicates the
extra levels for the mesh being refined inside the gap, and in (b) the red line is the
interface of the left bubble while the blue line is the right one. The two bubbles bounce
off at a spatial resolution of n = 3 but coalesce numerically below that.

2. Validations of numerical method II
The diagrammer sketches of figures 6, 10 and 11 in the manuscript were obtained

by using numerical method II (NM2), which was designed to simulate the flow past
one (two) isolated frozen bubble(s), the complete incompressible MHD - Navier - Stokes
equations in § 2 of the manuscript are still solved, however note that the surface tension
force is now eliminated owing to the frozen shapes of the bubble(s) but no-penetration
and free-slip boundary conditions are enforced on the bubble interface. Specifically, the
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Figure 3: Spatial descretisations in the computational domain about the flow past a pair
of bubbles, the thinnest meshes surrounding the bubbles have a thickness of δ = D/1000
while the growth factor is ε = 1.1. (a) Overall view; (b) local view.

normal velocity vanishes due to the impermeability of the interface, and the tangential
components of fluid shear stress on the bubble surface are specified to zero:

u · n = 0 (2.1)

(S · n) · s = 0 (2.2)

(S · n) · t = 0 (2.3)

where S = µ(∇u+∇T u) is the viscous stress tensor, n is the outward unit normal vector
of the bubble interface, and s and t are two mutually orthogonal unit vectors tangential
to the bubble interface.

With respect to the numerical methods, the convective and diffusive terms are spa-
tially discretized by using second-order accurate center difference schemes, which are
implemented with skewness corrections for the non-orthogonal meshes. Then a fraction-
step method is employed to solve the pressure-velocity coupling equation. The temporal
discretisations are as follows, an Adams - Bashforth scheme is designed to update the
convective term and a Crank-Nicolson scheme is for the diffusive term.

In the simulations, the bubble(s) is located in a computational domain characterised by
a size of Lx×Lz×Ly = 20D×20D×40D with x− connecting the bubble centroid and y−
denoting the streamwise direction. Non-uniform body-fitted meshes are generated around
the bubble(s), their typical distributions corresponding to a bubble pair of Re = 300 and
χ = 2.0 are displayed in figure 3. Note that the thinnest meshes surrounding the bubbles
have a thickness of δ = D/1000 while the growth factor is ε = 1.1, then the domain is
discretisized by 128×81×96 nodes. Pan et al. (2018, 2019) already show that such spatial
resolutions are sufficient in resolving the boundary layer about a MHD flow past a rigid
sphere at Reynolds number up to 300, and as a consequence, neither the grid independent
study nor the numerical validations about the MHD module will be discussed here.

Instead, we mainly focus on the free-slip boundary problems, which correspond to
equations (2.1) ∼ (2.3). Two series of tests are carried out, one is about the drag
coefficients for different hydrodynamic flows past an isolated ellipsoidal bubble, and the
results provided by Blanco & Magnaudet (1995) are used for comparison, as presented
in Table 1. The other is about the hydrodynamic forces acting on spherical bubble pairs
rising side by side with a separated distance of S = 1.5D, and the comparisons against the
numerical results reported by Legendre et al. (2003) are given in Table 2. Note that the
Reynolds number here is characterised by the length of the major axe given by b at χ > 1,
and the drag or lift coefficient is defined as CD,L = 8Fy,x/πb

2ρU2
0 , with Fy,x being the

total forces in the corresponding direction. Both series of tests show very good agreements
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χ Re 100 400 600 800
1.5 Present 0.512 0.163 0.114 0.085

Blanco & Magnaudet (1995) 0.516 0.161 0.112 0.084
1.95 Present 0.631 0.222 0.155 0.115

Blanco & Magnaudet (1995) 0.627 0.220 0.152 0.117

Table 1: Drag coefficient CD of an ellipsoidal inviscid bubble as a function of Re and χ.
Note Re is characterised by the length of the major axe given by b.

Re Results CD CL

10 Present 2.50 0.158
Legendre et al. (2003) 2.53 0.160

300 Present 0.147 −0.0662
Legendre et al. (2003) 0.147 −0.0664

Table 2: Drag and lift coefficients of a pair of spherical bubbles separated by a distance
of S = 1.5D.

with reference results, and as a consequence, the accuracy of NM2 in simulating the flow
past bubble(s) is identified, and the combination with the aforementioned MHD module
enables it to be credible in simulating the MHD flows past bubble(s).

3. Snapshots of vortex structures using streamwise component and λ2

criterion
As a supplement of figure 4 in the manuscript, a complete evolution of the vortex

structures corresponding to different bubble pairs are displayed in figure 4 and 5, with
the previous describing the streamwise component of ωy = ±4 while the later using the
λ2 criterion(Jeong & Hussain (1995)) of λ2 = −0.2. Note that the picked time period is
very short, i.e. for D = 2 mm, the starting dimensionless time moment is t0 = 2.76 with
an interval of ∆t = 0.035 (∆Y < 0.07) between two successive pictures, and others are
t0 = 2.90 and ∆t = 0.066 for D = 2.5 mm, t0 = 2.90 and ∆t = 0.13 for D = 3.0 mm,
and t0 = 2.12 and ∆t = 0.71 for D = 4.0 mm. In each panel, the wake vortices are only
displayed in every two pictures while the other one only portrays the bubble shapes.

4. Rising paths of the bubble pairs under different MFs
As a supplement of figure 7, 12 and 14 in the paper, a complete set of rising paths for

the bubble pair exposed to different MFs are plot in figure 6, 7 and 8, which correspond
to the streamwise MFs, the transverse MFs and the spanwise MFs, respectively. Besides,
the snapshots of the bubble shapes are also displayed during the collision period, which
is rather short that the bottom image denotes t0 = 2.61 while the time interval between
two successive pictures ∆t = 0.334. In both of streamwise MFs and transverse MFs, we
see the bouncing-separation interaction transits to coalescence gradually by promoting
the MF strength, however, in a spanwise MF, a transition from bounce to coalescence is
firstly observed within a small-to-moderate MF until Nx = 0.2, but then a continuous
promotion of Nx makes the two bubbles bounce (Nx = 0.8) and even repel (Nx = 2.24).
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Figure 4: Snapshots of the wake vortices ωy = ±4 during the bubble interactions
corresponding to (a) D = 2 mm, (b)D = 2.5 mm, (c) D = 3 mm and (d) D = 4
mm.

5. Evolution of the vortex structures corresponding to Nx = 0.80 and
2.24

Figure 9(a) displays the snapshots of the double-threaded vortices behind the bubble
pairs at a moderate spanwise MF of Nx = 0.80, with the first two embed pictures denoting
iso-contours ωy = ±1.7 for a better illustration of Lorentz diffusion induced vortices
and the following embed pictures are ωy = ±3.5. Clearly, before t = 11 when the two
bubbles are separated with a relatively far distance, Lorentz diffusion induced vortices
are dominant that little asymmetry is observed between L1(2) and R1(2). However as
the two bubbles keep on approaching within 11 < t < 23, the double vortex pairs become
more asymmetrical that more fluids converge to the interior position to generate stronger
vortex pair there, which finally generate repulsive lift force to make the two bubbles
bounce off. In addition, figure 9(b) describes the evolution of the double-threaded vortices
ωy = ±3.5 corresponding to a strong spanwise Mf of Nx = 2.24. We see the two bubbles
never approach towards each other, because the asymmetric double vortex pairs, which
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Figure 5: Snapshots of the wake vortices λ2 = −0.2 (Jeong & Hussain (1995)) during the
bubble interactions corresponding to (a) D = 2 mm, (b)D = 2.5 mm, (c) D = 3 mm and
(d) D = 4 mm.

are induced by the Lorentz diffusion effect, produce a repulsive force which prevails over
the weak attractive force in this case from the beginning of rising.
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Figure 6: Rising paths of the bubble pairs exposed to different streamwise MFs ranging
between N = 0 and Ny = 2.24, and the bubble size is fixed at D = 3.0 mm. Snapshots of
the bubble shapes are also displayed in the right panel, with the bottom image denoting
t0 = 2.61 and the time interval between two successive pictures ∆t = 0.334. With
an intensified streamwise MF, the interaction between the bubble pair transits from
bouncing-separation to bouncing-coalescence, and then direct coalescence.
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Figure 7: Rising paths of the bubble pairs exposed to different transverse MFs ranging
between N = 0 and Nz = 2.24, and other descriptions refer to those in the caption of
figure 6.
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Figure 8: Rising paths of the bubble pairs exposed to different spanwise MFs ranging
between N = 0 and Nx = 2.24, and other descriptions refer to those in the caption of
figure 6.
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Figure 9: Time histories of the double-threaded vortices behind the bubble pair
corresponding to (a) Nx = 0.80 and (b) Nx = 2.24. Except that the first two embed
figures in (a) denote the iso-contours ωy = ±1.7, all others correspond to ωy = ±3.5.


