
Supplementary Material: Inertial stretching separation in binary droplet collisions

Karrar H. Al-Dirawi,1, ∗ Khaled H. A. Al-Ghaithi,2 Thomas C.

Sykes,2, 3 J. Rafael Castrejón-Pita,4 and Andrew E. Bayly1, †

1School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
2EPSRC Centre for Doctoral Training in Fluid Dynamics,

University of Leeds, Leeds LS2 9JT, United Kingdom
3Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom

4School of Engineering and Materials Science, Queen Mary,
University of London, London E1 4NS, United Kingdom

(Dated: June 7, 2021)

I. MORE ON THE EFFECT OF THE OFFSET ON THE MAXIMUM DEFORMATION LENGTH

To track the dynamics of the stretched system, we track the change in its normalised major length (L̃) over time.
The normalised major length is defined as the longest line that can be bounded by the edge of the system of the

coalesced droplets normalised by the original diameter of the droplets. Fig. S1 is an example that shows how L̃ evolves
over time for 8% HPMC (Oh = 0.214) at We = 83 for different offsets. As it can be seen, For B ≤ 0.38 the system

stretches to its maximum (L̃max) then retracts. The stretching separation occurs if L̃max ≥ L̃max,c = 3.35, as in the
collisions of B = 0.31, 0.33 and 0.38. However, in collisions with B significantly greater than Bc (here in this example
Bc = 0.31), such as in B ≥ 0.41, the system keeps stretching until separation without any retraction. Finally, Fig. S1

also shows how comparable L̃max in the collisions of B ≤ 0.2 that implies the negligible effect of B at this range, seen
in the region I in Fig. 4a in the main paper.

II. MORE ON THE DERIVATION OF THE C-SS TRANSITION MODEL

The dynamics of head-on binary droplet collisions have been studied by many authors [1–5]. Based on energy
balance in the compression phase (between the initial instant of collision and the instant of maximum deformation,
as shown in Fig. S2), Planchette et al. [2] demonstrated that there is a fixed ratio (α) of viscous loss (Eµ,comp) to
the initial kinetic energy (Ek,ini = πσD2

oWe/24), as for a given Oh, α is constant for a wide range of Ek,ini (i.e. We)
including the range covered in this work, as demonstrated in Fig. S2. However, the value of α depends on Oh, as
shown in figure 7 in the main paper. At low Oh values (/ 0.02), α generally increases with Oh from 0.50 to 0.65±0.05.
For Ohnesorge numbers from 0.02 to 0.14, α remains constant at 0.65± 0.05, therefore exhibiting inertial behaviour
(independent of viscosity). For Oh > 0.14, the value of α is scattered but with a value generally above that of the
preceding constant region. Extensive details and scaling arguments for why these three behaviors of α are seen can
be found in Ref. [2].

Using the above knowledge of the viscous loss, the surface energy at the maximum deformation (Eσ,max) can be
predicted via the energy balance at the compression phase Eσ,max = (1−α)Ek,ini +Eσ,ini, where Eσ,ini is the initial
surface energy of the droplets and is given by Eσ,ini = 2πD2

oσ. Using volume conservation, Willis and Orme [3]
reported that the shape of the system at the maximum deformation can be well approximated by a pancake-shape of
diameter Lmax
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. Hence, its surface energy is given by
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This equation is the same one used by Planchette et al. [2], and is used in this work to estimate α from the energy

balance. Thereby, from the energy balance, L̃max
∣∣
B=0

can be estimated, as a function of the experimentally measured
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FIG. S1. The evolvment of the normalised major length of the coalesced droplets with time for collisions of 8% HPMC droplets
(Oh = 0.214) at We = 83 at different offset. The time, here, is normalized by the droplet oscillation time (T = (π/4)

√
(ρD3

o)/σ).
Here, filled symbols mean permanent coalescence whereas the open symbols mean stretching separation.
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FIG. S2. A schematic defining the compression and the relaxation phase in head-on collision.
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FIG. S3. The viscous loss in the compression phase as a function of the initial kinetic energy at head-on collision for three
different Oh. Note that the intercept in all the fitted lines here is zero.
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FIG. S4. Influence of the impact parameter, B, on the maximum length that the coalesced droplets attain.
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III. EXAMPLE DATA OF WATER AND GLYCEROL

Fig. S4 shows that the far ends of our data water and 83% glycerol are consistence with the trends seen in figure
6a in the main paper.
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