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This supplementary information document is divided into four distinct sections. In §S1,
we provide a detailed derivation of the Modified Smoluchowski Slip Velocity at O(ζ̄30 ) in a
viscoelastc medium, by taking into consideration particle’s rotation. This section complements
§3 and of the main manuscript and in particular eqn. (3.20) therein. In §S2, we complement
§4.2 of the main manuscript; here we outline the expressions for the stream functions and their
components at O(ζ̄30 ). In §S3, additional details on the numerical simulations for FENE-P
constitutive model discussed in §4.4 of the main manuscript have been included. Finally, §S4
is dedicated to provide further insights into the distribution of polymeric stresses around the
particle, in the outer layer. This section complements the discussions on “birefringent strands”
in §4.5 of the main manuscript.

S1 Derivation of Modified Smoluchowski Slip with par-

ticle rotation

S1.1 Assumptions associated with particle rotation

It is assumed that the particle rotates with angular velocity Ω around it’s center. In general,
this angular velocity may be expressed as: Ω = Ωxêx + Ωyêy + Ωzêz. Because of rotation,
the charge distribution on the particle surface with respect to a frame fixed at the particle’s
center (but not rotating with the particle) will change with time, which naturally makes the
flow unsteady. However, the analysis simplifies if the time scale of rotation (|Ω|−1) is large
as compared to the relaxation and retardation time scales of the fluid. We therefore assume
that |Ω|−1 � λ′1, λ

′
2 is satisfied, which ensures that the motion is quasi-steady and the flow

field around the particle depends on the instantaneous angular and translational velocity of
the same. It is clear that the above condition is satisfied for slow rotation of the particle. To
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complete the description, it is necessary to determine how the surface charge density evolves
in time, so that it is a known quantity at any given time. The rate of change of surface charge
density is given by:

∂ζ

∂t
=
∂ζ

∂θ
θ̇ +

∂ζ

∂ϕ
ϕ̇ (S1)

It may be verified that the rate of change of angles θ and ϕ of a point on the particle surface
is linked to it’s angular velocity as follows:

θ̇ = (Ω× êr) · êθ = Ωy cosϕ− Ωx sinϕ (S2a)

and ϕ̇ = (Ω× êr) · êϕ = − [Ωy sinϕ+ Ωx cosϕ] cos θ + Ωz sin θ (S2b)

Once the angular velocities are known, eqn. (S1) may be solved to deduce the surface charge
distribution at the subsequent times, subject to some pre-specified initial condition.

S1.2 The leading order Salt and Current flux matching conditions

Eqn. (3.8) of the main manuscript outlines the leading order salt and current flux matching
conditions at the edge of the EDL. These conditions are required to write solutions for the
potential and the salt concentration in the outer layer. In this subsection, we present a brief
derivation of the conditions mentioned in (3.8) of the manuscript. We can arrive at the necessary
matching conditions by writing the Nernst-Plank equations in the following conservative form:
∇ · i = ∇ · j = 0, where i and j are the current and salt flux densities respectively. These
flux densities can be written as (see eqns. (2.1a) and (2.1b) in the manuscript): i = Pevρ −
∇ρ− c∇(φ + φext) and j = Pevc−∇c− ρ∇(φ + φext), wherein the following char. scale has
been chosen for the flux: ic ∼ jc ∼ Dc′0/a. In the inner layer, the flux components have to be
rescaled as follows [1, 2]: ir → δ−1Ĩr, iθ → Ĩθ and iϕ → Ĩϕ, wherein Ĩk (k = r, θ, ϕ) ∼ O(1).
Similar rescaling also applies to the salt flux. After rescaling, the salt and charge conservation
equations in the inner layer may be expressed as:

∂

∂R

{
(1 + δR)2Θ̃r

}
+ δ2 (1 + δR)

[
∂

∂µ

(√
1− µ2Θ̃θ

)
+

1√
1− µ2

∂Θ̃ϕ

∂ϕ

]
= 0, (S3)

where, Θ is the flux density of a generic quantity and may represent both current (Θ̃ = Ĩ) or
the salt flux (Θ̃ = J̃). The matching condition for the fluxes then take the following form [1]:

lim
R→∞

[δ−1Ĩr, δ
−1J̃r] = lim

r→1
[ir, jr] (S4)

We may now use eqn. (S3) to evaluate the LHS of the above matching conditions [2]. To this
end, eqn. (S3) may be integrated in R to write:

lim
R→∞

Θ̃r = − lim
R→∞

δ2

(1 + δR)2

∫ R

0

(
1 + δR̂

)[ ∂
∂µ

(√
1− µ2Θ̃θ

)
+

1√
1− µ2

∂Θ̃ϕ

∂ϕ

]
dR̂ (S5)

Equations (S5) and (S4) may now be combined, along with the expressions for the outer region
fluxes given prior to eqn. (S3), to write down explicit matching conditions for the net charge
and salt concentrations at the edge of the EDL. It then follows from the expressions for i and
j mentioned earlier that in the leading order of δ, we may write:

∂c

∂r
=
∂φ

∂r
= 0, at, r = 1. (S6)

This is the eqn. (3.8) in the manuscript.
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S1.3 Derivation of rescaled constitutive relations inside the EDL -
Eqns. (3.5) of the manuscript

To better illustrate the nature of the constitutive equations presented in (3.5) of the manuscript,
we consider two representative stress components and establish their rescaling inside the EDL.

The first example is for the θθ component of the stress, which satisfies the following equation
[3] (note that the “dashed” variables denote dimensional quantities with units):

τ ′θθ + λ′1T ′θθ = 2η [D′θθ + λ′2S ′θθ] (S7a)

where, T ′θθ = [
∇
τ ]′θθ = u′r

∂τ ′θθ
∂r′
− u′θ

√
1− µ2

r′
∂τ ′θθ
∂µ

+
u′ϕ

r′
√

1− µ2

∂τ ′θθ
∂ϕ
− 2

{
τ ′rθ

(
∂u′θ
∂r′
− u′θ
r′

)

+
τ ′θθ
r′

(
u′r −

√
1− µ2

∂u′θ
∂µ

)
−

τ ′θϕ

r′
√

1− µ2

∂u′θ
∂ϕ

}
(S7b)

Notice that T ′θθ is the θθ component of the convected derivative of the stress and S ′θθ also has
analogous expression as given in (S7b), with τ ′ij replaced by D′ij.

Now, let us first establish various relevant scales as follows.

1. Outer Region:

Velocity: uc ∼
εk2T 2

e2ηa
; Length: a; Stresses: τc ∼

ηuc
a

(S8a)

2. Inner Region:

Velocity: u′θ and u′ϕ ∼ uc; u′r ∼
λD
a
uc ∼ δuc; Length: λD

τ ′rr ∼ τc; Shear Stresses: τ ′rθ, and τ ′rϕ ∼ τEDLs,c =
ηuc
λD

= δ−1τc (S8b)

Other extensional stresses: τ ′θθ, τ
′
ϕϕ and τ ′θϕ ∼ τEDLex,c

Recall that in the above equations, λD is the Debye length (characteristics thickness of the
EDL) and λD/a = δ. In the inner layer, we have assumed that the shear stresses (τ ′rθ, τ

′
rϕ) and

the extensional stresses (τ ′θθ, τ
′
ϕϕ and τ ′θϕ) scale differently. First, notice that τ ′rr ∼ τc - this may

be attributable to the fact that the Oldroyd-B fluids have zero second normal stress coefficient
[3]. Further, because this model does not predict shear thinning, it is expected that the shear
stresses inside the EDL will scale as: τ ′rθ ∼

ηuc
λD

= τEDLs,c , which may be rewritten as: δ−1τc.
This is exactly same as a Newtonian fluid and also exactly same as what has been represented
in Table 1 of the manuscript. However, so far, we have not assumed anything about the
characteristic magnitude of the extensional stresses, τEDLex,c . Once τEDLs,c (scale for shear stress)
is fixed, this scale may be worked out from (S7a). Notice that so far, for estimating the orders
of the stress components, we have also not encountered Deborah number anywhere.

Let us now examine the orders of magnitudes of different terms appearing in T ′θθ in (S7b).

All the terms containing extensional stresses, such as u′r
∂τ ′θθ
∂r′

,
u′θ

√
1−µ2
r′

∂τ ′θθ
∂µ

,
τ ′θϕ

r′
√

1−µ2
∂u′θ
∂ϕ

, etc., scale

as:
(
uc
a

)
τEDLex,c . On the other hand, the only term containing the shear stress, i.e., τ ′rθ

(
∂u′θ
∂r′
− u′θ

r′

)
scales as: uc

λD
τEDLs,c = δ−1

(
uc
a

)
τEDLs,c . Therefore, the left hand side of eqn. (S7a) contains terms

that obey the following scaling behavior: (i) the first term, τ ′θθ ∼ τEDLex,c ; (ii) terms in λ′1T ′θθ
that contain extensional stresses: λ0uc

a
τEDLex,c and (iii) finally the term containing shear stress,

δ−1 λ0uc
a
τEDLs,c . Note that we have assumed λ′1 ∼ λ′2 ∼ λ0. Now, if one defines De = λ0uc

a
as
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the nominal Deborah number and sets De ∼ O(1), it follows that the left hand side of eqn.
(S7a) contains terms with two distinct scales: (i) τEDLex,c and (ii) δ−1τEDLs,c . Since this equation
must retain τθθ, it follows that τEDLex,c = δ−1τEDLs,c = δ−2τc. This is exactly the same scaling that
represents the extensional stresses in the manuscript - see Table 1. An explanation for why this
scaling is observed has been presented in details after eqns. (3.4) of the manuscript.

Now, we may define non-dimensional stresses inside the EDL as follows: τ̃θθ =
τ ′θθ
δ−2τc

,

τ̃θϕ =
τ ′θϕ
δ−2τc

, τ̃rθ =
τ ′rθ
δ−1τc

etc., such that all these dimensionless stresses are O(1). We further

enforce, ∂
∂r′

= 1
λD

∂
∂R

= δ−1a−1 ∂
∂R

and normalize the velocity components with their respective
characteristic scales inside the EDL, as mentioned above in eqns. (S8a) and (S8b). Analogously,
the right hand side of eqn. (S7a) may also be scaled in the same way - we do not mention
that to avoid repetition. It then directly follows that the leading order (in δ) non-dimensional
version of the θθ component given in (S7a) inside the EDL takes the following form:

τ̃θθ + λ1DeT̃θθ = 2λ2DeS̃θθ (S9)

where, it may be verified that the expressions for T̃θθ and S̃θθ are exactly the same as given in
(3.5b), (A1d) and (A2d) in the manuscript.

At this point, it may be noted that if one defines DeEDL = δ−1De = λ0uc/λD as the
characateristic Deborah number inside the EDL, the terms containing the shear stresses in
λ′1T ′θθ would then scale as: DeEDLτ

EDL
s,c = DeEDLδ

−1τc. But since DeEDL ∼ O(δ−1), it follows
that this same scale may also be represented as: δ−1τEDLs,c = δ−2τc, which is identical to how we
have scaled the extensional stresses (except τ ′rr) inside the EDL. The argument presented here
indicates how defining a characteristic Deborah number inside the EDL as DeEDL = λ0uc/λD
is exactly equivalent to re-scaling the shear stresses as δ−1τc and the extensional stresses as
δ−2τc inside the EDL.

The contextual appropriateness of the Oldroyd-B model and the scaling mentioned above
is that its consistency may be checked, by non-dimensionalizing the equation for τ ′rθ inside the
EDL with the same characteristic scales as mentioned above, and then observe whether the
same fits in. This aspect is further elucidated below.

The dimensional version for the rθ component of stress reads:

τ ′rθ + λ′1T ′rθ = 2η [D′rθ + λ′2S ′rθ] (S10a)

where, T ′rθ = [
∇
τ ]′rθ = u′r

∂τ ′rθ
∂r′
− u′θ

√
1− µ2

r′
∂τ ′rθ
∂µ

+
u′ϕ

r′
√

1− µ2

∂τ ′rθ
∂ϕ
− τ ′rr

(
∂u′θ
∂r′
− u′θ
r′

)
− τ ′rθ

(
∂u′r
∂r′

+
u′r
r′
−
√

1− µ2

r′
∂u′θ
∂µ

)
−

τ ′rϕ

r′
√

1− µ2

∂u′θ
∂ϕ

+
τ ′θθ
√

1− µ2

r′
∂u′r
∂µ
−

τ ′θϕ

r′
√

1− µ2

∂u′r
∂ϕ

(S10b)

Let us again examine the orders of magnitudes of different terms appearing in (S10a). In view
of the scales we have already discussed in relation to the θθ component of the stress in (S7), it
is straightforward to show that the dominant scale in all the terms in T ′rθ appearing in (S10b)
is simply, uc

a
τEDLs,c =

(
uc
a

)
δ−1τc. We would like to clarify that to arrive at this conclusion, one

has to take into account that τEDLex,c ∼ δ−1τEDLs,c inside the EDL. Therefore, overall the term

λ′1T ′rθ scales as
(
λ0uc
a

)
τEDLs,c . Since we have already enforced De = λ0uc

a
∼ O(1), it follows that

all the terms on the left hand side scale as: τEDLs,c = δ−1τc. The right hand side of eqn. (S10a)
may also be scaled analogously inside the EDL and we do not mention that here for the sake
of brevity.
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Now, if one enforces the non-dimensionalization scheme mentioned before (S9) for all quan-
tities inside the EDL, it may be easily verified that in the leading order of δ, we get the following
equation for τ̃rθ:

τ̃rθ + λ1DeT̃rθ = 2
[
D̃rθ + λ2DeS̃rθ

]
(S11)

In the above, T̃rθ, D̃rθ and S̃rθ are identical to those in eqns. (3.5a), (A1b), (A2b) and (A4) in
the manuscript and nominally they are all O(1). Likewise, the rescaled forms of the equations
given in eqn. (3.5) and Appendix-A of the manuscript for other stress components, may also
be verified.

Notice that in deriving (S9) and (S11) by enforcing the scaling inside the EDL, we have
never used the fact that the surface charge is weak. Therefore, these scalings are valid as long
as the characteristic velocity scales as uc. Now, for a weakly charged particle, ζ̄0 � 1 (see
the manuscript for definition), and therefore the flow will be weak in nature. Thus, the non-
dimensional velocity (uθ, uϕ etc.) in both the regions will at the most scale as O(ζ̄0), which
means that the appropriately normalized stresses would scale at the most as O(ζ̄0) everywhere.
Therefore, it naturally follows that the non-linear terms represented by T̃rθ, T̃θθ, etc. would
scale at the most as O(ζ̄20 ). Consequently, if we expand all variables in an asymptotic series
of ζ̄0, in the leading order of ζ̄0, only linear Newtonian-like contributions will be present and
the non-linear components of the polymeric stresses given by T̃rθ etc., would start to contribute
from O(ζ̄20 ) onwards. Therefore, the flow is effectively Newtonian in the leading order of ζ̄0 and
viscoelastic effects play a subdominant role to an extent to influence higher order effects only.
In other words, the overall transport is weakly viscoelastic. Considering that the asymptotic
expansion in ζ̄0 may also be treated as an expansion in Deeff = Deζ̄0 ∼ O(ζ̄0), it is imperative
that the flow is effectively weakly viscoelastic, despite nominally De ∼ O(1).

S1.4 Velocity field in the Inner layer and the Modified Smoluchowski
Slip

We first note that in presence of particle rotation, the “Modified Smoluchowski Slip” will be
defined as: vS = limR→∞[U êθ + W êφ] − Ω × êr. Recall that in the inner layer, the velocity
field has the expansion: V = ζ̄0V1 + ζ̄20V2 + ζ̄30V3 + ..., where V = U êθ + W êϕ + V êr.
Further recall that (see §3.4 in the main manuscript) both U and W remain bounded inside
the EDL and on the particle surface, V satisfies the following b.c.: V(R = 0) = Ω × êr =
Γêθ + χêϕ. Recall that, Γ = (Ω× êr) · êθ = Ωy cos(ϕ) − Ωx sin(ϕ) and χ = (Ω× êr) · êϕ =
− (Ωx cos(ϕ) + Ωy sin(ϕ)) cos(θ)+Ωz sin θ. The O(ζ̄0) and O(ζ̄20 ) velocity fields in the EDL and
the resulting modified Smoluchowski slip, accounting for particle rotation have already been
mentioned in §3.4 of the main manuscript - see eqns. (3.14) and (3.18) therein. However, in
eqn. (3.20) of the manuscript, the corrections to the Smoluchowski slip at O(ζ̄30 ) was reported
only for non-rotating particles. Here the complete results for the O(ζ̄30 ) modified Smoluchowski
slip in the presence of particle rotation has been discussed.

At O(ζ̄30 ), the velocity field satisfies the equations (see eqns. (3.19) in the manuscript):

∂2U3

∂R2
=2(λ1 − λ2)De∇̃ ·

[(
S̃ − λ1De=

)
· êθ
]
− 3

2
β
√

1− µ2
∂2Φ3

∂R3
(S12a)

∂2W3

∂R2
=2(λ1 − λ2)De∇̃∗ ·

[(
S̃ − λ1De=

)
· êϕ
]

(S12b)

where, ∇̃ = êr
∂
∂R
− êθ

∂
∂µ

√
1− µ2 + êϕ

∂
∂ϕ

and ∇̃∗ = êr
∂
∂R
− êθ

∂
∂µ

√
1− µ2 + êϕ

µ√
1−µ2

. The

various components of S̃ have been mentioned in Appendix-A of the main manuscript. The
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required components of = may be expressed as follows:

=rθ =
D(1)S̃(2)

rθ

Dt
− S̃(2)

rr

∂U1

∂R
− S̃(2)

rθ

(
∂V1
∂R
−
√

1− µ2
∂U1

∂µ

)
− S̃(2)

rϕ√
1− µ2

∂U1

∂ϕ

+
√

1− µ2S̃(2)
θθ

∂V1
∂µ

(S13a)

=θθ =
D(1)S̃(2)

θθ

Dt
− 2S̃(2)

rθ

∂U1

∂R
+ 2S̃(2)

θθ

√
1− µ2

∂U1

∂µ
(S13b)

=rϕ =
D(1)S̃(2)

rϕ

Dt
+ S̃(2)

rθ

(√
1− µ2

∂W1

∂ϕ
+

µW1√
1− µ2

)
− S̃(2)

rϕ

(
1√

1− µ2

∂W1

∂ϕ

∂V1
∂R

+
µU1√
1− µ2

)
(S13c)

=θϕ =− S̃(2)
rϕ

∂U1

∂R
− S̃(2)

θθ

(
µW1√
1− µ2

−
√

1− µ2
∂W1

∂µ

)
(S13d)

where,
D(k)ξ

Dt
= Vk

∂ξ

∂R
−
√

1− µ2Uk
∂ξ

∂µ
+

Wk√
1− µ2

∂ξ

∂ϕ

Eqns. (S12) may be solved subject to appropriate boundary condtions (see at the beginning
of §S1.4), from which the O(ζ̄30 ) slip velocity might be deduced. The final result for the slip
velocity takes the following form:

v
(3)
S = lim

R→∞
[U3êθ +W3êφ]−Ω3 × êr = v

(3)
S,θêθ + v

(3)
S,ϕêϕ (S14a)

v
(3)
S,θ =v

(3)
S · êθ = De2U2 +DeU1 + U0 (S14b)

v
(3)
S,ϕ =v

(3)
S · êϕ = De2W1 +DeW2

where, U0 = − 1

16
ζ̄3β
√

1− µ2 (S14c)

U1 =ω1H1(µ, ϕ) +H0(µ, ϕ) (S14d)

U2 =ω3
1G3(µ, ϕ) + ω2

1G2(µ, ϕ) + ω1G1(µ, ϕ) +G0(µ, ϕ) (S14e)

with, H1 =
3β(λ2 − λ1)

1− µ2
(3µΓ2 − 4χ2,ϕ) (S14f)

H0 =
3β(λ2 − λ1)

1− µ2

{
χ2ω1,ϕ − Γ2ω1,µ(1− µ2)

}
(S14g)

W2 =− 3β(λ2 − λ1)
1− µ2

{
χ2,ϕ(µ2 − 1)− µχ2

}
ω1 (S14h)

W1 =K1ω
2
1 +K2ω1 +K3ω1,µ +K4ω1,ϕ (S14i)

Expressions for Gj (j = 1− 3) and Ki (i = 1− 4) have been given in the next subsection (see
§S1.5). We reiterate that eqn. (3.20) in the main manuscript may be recovered by enforcing
Γ2 = χ2 = Γ1 = χ1 = 0 in the above expressions. Notice that the rotation only influences the
slip velocity from O(ζ̄20 ) onwards, as is obviously true at O(ζ̄30 ), evident from (S14) here and
eqns. (3.18) of the main manuscript. This is a unique result for viscoelastic medium and to
the best of our knowledge, ours is the first study to bring this effect to light. More discussions
on this topic has been included in §3.5 and §5 of the main manuscript. Further observe that at
O(ζ̄20 ) and also at subsequent higher orders, W becomes a function of R, whereas in Newtonian
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fluids, W (within the EDL) will simply be the local velocity at the particle surface. As a
result, particle’s angular velocity makes the flow within the EDL fully 3-dimensional. The
same is also expected of the outer layer because of inherent anisotropy in the Smoluchowski
slip boundary condition, applicable to the flow in that region. Such physical paradigms may
result in anisotropic drag on the particle [4], which might lead to a mismatch between the
velocity of the particle (U êu) and the direction of the imposed electric field.

S1.5 Expressions for the constants Gj’s and Kj’s in Eqns. (S14)

The functions Gj’s (j = 1− 3) are as follows:

G3 =− 3β3(λ1 − λ2)2

2(1− µ2)5/2
(
37µ2 + 29

)
(S15a)

G2 =γ1ω1,µ + γ2ω1,µµ + γ3Γ1 + γ4χ1,ϕ + γ5χ1,µϕ + γ6χ1,ϕϕ + γ7ω2 + γ8ω2,µ + γ9ω3,ϕ (S15b)

where, γ1 =
81β3µ(λ2 − λ1)

2(1− µ2)3/2
(4λ1 − 5λ2) ; γ2 =

27β3(λ2 − λ1)
4(1− µ2)1/2

(21λ1 − 34λ2) (S15c)

γ3 =
9β2(λ2 − λ1)
2(1− µ2)2

[
λ2
(
4µ2 + 7

)
− 5λ1

(
µ2 + 3

)]
(S15d)

γ4 =− 27β2µ(λ2 − λ1)
4(1− µ2)2

; γ5 = −(2/3)γ4; γ6 = (1/3)γ4 (S15e)

γ7 =
9β2µ(λ2 − λ1)
2(1− µ2)3/2

(λ1 − 4λ2) ; γ8 = −27β2(λ1 − λ2)2√
1− µ2

; γ9 = −45β2(λ1 − λ2)2

2(1− µ2)3/2
(S15f)

G1 =L1ω
2
1,µ + L2ω1,µ + L3ω1,ϕ + L4ω1,µϕ + L5ω1,µµ + L6Γ1 + L7Γ

2
1 + L8Γ1,ϕ + L9ω

2
2 + L10χ1

(S15g)

where, L1 =
27β3(λ2 − λ1)√

1− µ2
(11λ1 − 18λ2) (S15h)

L2 =− 9β2(λ2 − λ1)µ
2(1− µ2)

(5λ1 − 16λ2) Γ1 +
9β2(λ2 − λ1)√

1− µ2
(5λ1 − 8λ2)ω2 (S15i)

L3 =
45β2(λ2 − λ1)µ

2(1− µ2)2
(λ1 − 2λ2)χ1 +

9β2(λ2 − λ1)µ
(1− µ2)

(2λ1 − 3λ2)χ1,µ −
27β2(λ2 − λ1)2

2(1− µ2)3/2
ω3

(S15j)

L4 =
9(λ2 − λ1)β2

1− µ2
(λ1 − 6λ2)χ1; L5 = −(1− µ2)L4(Γ1/χ1) (S15k)

L6 =
6βλ2(λ2 − λ1)µ

1− µ2
ω2 + 3λ2β (λ2 − λ1)ω2,µ; L7 = −3βλ2(λ2 − λ1)

(1− µ2)3/2
(1 + µ2) (S15l)

L8 =− 3β(λ2 − λ1)2

1− µ2
ω3 +

3βµ(λ22 − λ21)
(1− µ2)3/2

χ1 +
3βλ1(λ2 − λ1)√

1− µ2
χ1,ϕ (S15m)

L9 =
3βλ2(λ1 − λ2)√

1− µ2
; L10 =

3βλ2(λ1 − λ2)
1− µ2

ω2,ϕ (S15n)

G0 =J1ω
2
1,µ + J2ω1,µ + J3ω1,ϕ + J4ω1,µϕ + J5ω1,ϕϕ + J6ω1,µµ (S15o)

with, J1 = 18(λ1 − λ2)β2(λ1 − 3λ2)Γ1 (S15p)

J2 =
18(λ1 − λ2)β2(λ1 − 3λ2)

1− µ2
χ1ω1,ϕ +

3µλ2(λ1 − λ2)√
1− µ2

Γ2
1 + 6βλ2(λ2 − λ1)Γ1ω2
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+
3βλ2(λ2 − λ1)√

1− µ2
χ1Γ1,ϕ (S15q)

J3 =
3βλ2(λ2 − λ1)

(1− µ2)3/2
{

(1− µ2)χ1,µ + 3µχ1

}
Γ1 +

6βλ2(λ1 − λ2)
1− µ2

χ1ω2

3βλ2(λ1 − λ2)
(1− µ2)3/2

χ1χ1,ϕ (S15r)

J4 =
6βλ2(λ2 − λ1)

(1− µ2)1/2
χ1Γ1; J5 =

3βλ2(λ1 − λ2)
(1− µ2)3/2

χ2
1; J6 = 3λ2(λ1 − λ2)β

√
1− µ2Γ1 (S15s)

The functions Kj’s (j = 1− 4) have the following expressions:

K1 =K11ω3 +K12ω3,µ +K13ω3,ϕ +K14χ1 +K15χ1,µ +K16χ1,ϕ +K17χ1,ϕµ +K18χ1,µµ (S16a)

K11 =
9β2(λ1 − λ2)2µ

2(1− µ2)3/2
; K12 =

9β2(λ1 − λ2)2

(1− µ2)1/2
; K13 = −1

2
K12 (S16b)

K14 =
9β2(λ1 − λ2)

(
µ2(λ1 + λ2) + 5λ1

2

)
2(1− µ2)2

; K15 = −27λ1β
2(λ2 − λ1)µ

4(1− µ2)
(S16c)

K16 =K15

(
1− 2

λ2
λ1

)
; K17 =

27

4
λ1β

2(λ1 − λ2); K18 =
3

2
K17 (S16d)

K2 =K21ω1,µ +K22ω1,ϕ +K23ω3 +K24ω3,µ +K25ω3,ϕ +K26Γ1 +K27ω2 +K28χ
2
1,ϕ +K29χ1,ϕϕ

(S16e)

where, K21 = K211ω3 +K212χ1 +K213χ1,µ +K214χ1,ϕ; K211 =
45β2(λ1 − λ2)2

2
√

1− µ2
(S16f)

K212 =− 9β2λ2(λ1 − λ2)(2λ1 + 3λ2)µ

1− µ2
; K213 = 9λ1β

2(λ1 − λ2); K214 = 9β2(λ1 − λ2)(λ1 + 3λ2)

(S16g)

K22 =− 1

5
K211ω3; K23 = K231Γ1 +K232ω2 +K233]χ1,ϕ; K231 = −6βµ(λ1 − λ2)2

1− µ2
(S16h)

K232 =
3β(λ1 − λ2)2√

1− µ2
; K233 = − K232√

1− µ2
; K24 = −3β(λ1 − λ2)2Γ1 (S16i)

K25 =−K233χ1; K26 = K261χ1 +K262χ1,µ +K263χ1,ϕ +K264χ1,µϕ (S16j)

K261 =
3β(λ2 − λ1)
(1− µ2)3/2

[
λ1(1 + 2µ2) + µ2λ2

]
; K262 =

3βµλ1(λ2 − λ1)√
1− µ2

(S16k)

K263 =
3βµ(λ22 − λ21)√

1− µ2
; K264 = 3βλ1(λ2 − λ1)

√
1− µ2 (S16l)

K27 =
3β(λ21 − λ22)

1− µ2

[
(1− µ2)χ1,ϕ + µχ1

]
; K28 = −3βλ1(λ1 − λ2)√

1− µ2
; K29 = −K28χ1 (S16m)

K3 =3β(λ2 − λ1)Γ1

[
µ(λ1 + λ2)√

1− µ2
χ1 + (λ1 + λ2)

√
1− µ2χ1,ϕ + (λ1 − λ2)ω3

]
(S16n)

K4 =3β(λ2 − λ1)

[
−µ(λ1 + λ2)

(1− µ2)3/2
χ2
1 −

λ1 + λ2√
1− µ2

χ1χ1,ϕ +
λ2 − λ1
1− µ2

χ1ω3

]
(S16o)
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S2 Components of the stream function at O(ζ̄3
0)

S2.1 Expression for N (3)
1

Recall that Ψ3 satisfies the equation: E4Ψ3 = De2β3(λ1 − λ2)
6∑

n=1

N (3)
n (r)Qn(µ). Further note

that N (3)
1 = P1(r)a

3
0 + P2(r)a0a

2
1. Expressions for P1 and P2 are given by the following:

P1 =
1782(λ2 − λ1)

r8
− 2580λ1

r10
+

1224λ1
r13

and P2 = λ1P21 + λ2P22 (S17a)

where, P21 =
27

175

[
7035

r8
+

11375

r10
+

22896

r11
− 94500

r12
− 96700

r13
+

72000

r15

]
(S17b)

P22 =
27

175

[
−10335

r8
+

37625

r10
− 3456

r11
− 1600

r13

]
(S17c)

S2.2 Stream function at O(ζ̄3
0) for a uniformly charged particle

Complete solution for Ψ3 for the special case of a uniformly charged particle (a0 = 1, a1 = 0)
is given by:

Ψ3,ucp =De2β3(λ1 − λ2) [M1(r)Q1(µ) + M3(r)Q3(µ)] (S18a)

M1(r) =
U3,ucpr2

De2β3(λ1 − λ2)
+ b11r +

b12
r
− 9 {λ1(1573r5 + 572r3 − 68)− 1573λ2r

5}
5720r9

(S18b)

M3(r) =
b31
r

+
b32
r3
− 3 {λ1(3861r5 + 104r3 − 16)− 3861λ2r

5}
520r9

(S18c)

b11 =− 3U3,ucp
2De2β3(λ1 − λ2)

+
3

40
(λ1 + 8λ2)−

12663

2288
λ1 +

297

80
λ2 −

β

16De2β3(λ1 − λ2)
(S18d)

b12 =− 3

40
(λ1 + 8λ2) +

U3
2De2β3(λ1 − λ2)

+
100701

11440
λ1 −

99

16
λ2 +

β

16De2β3(λ1 − λ2)
(S18e)

b31 =
3

20
(802λ1 − 1369λ2)−

12231

1040
λ1 +

891

80
λ2 (S18f)

b32 =
7185

208
λ1 −

2673

80
λ2 +

3

20
(802λ1 − 1369λ2) (S18g)

and finally, U3,ucp = De2β3(λ1 − λ2)
(

23

8
λ2 −

20819

5720
λ1

)
− 1

24
β (S18h)

S3 Numerical simulations for the FENE-P model: the

velocity field

In §4.4 of the manuscript, accuracy of the analytical solutions derived using the Oldroyd-B
model has been assessed by comparing them with numerical solutions for the FENE-P con-
stitutive model, which is more robust and does not suffer from the many shortcomings of the
Oldroyd-B model - also see §3.6 of the manuscript. The detailed governing equations, boundary
conditions and the simulation environment along with the mesh have been outlined in §4.4.1
and §4.4.2 in the manuscript. The simulations have been carried out in the commercial software
package COMSOL Multiphysics 5.6, using its Polymer flow module. Detailed comparison with
analytical solutions have been included in §4.4.3 of the manuscript.
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Figure S1: Velocity magnitude contours deduced from the numerical solutions for flow past a spherical ax-
isymmetric particle in a FENE-P fluid. The schematic of the flow domain has been depicted in figure 2 in
the manuscript. Here only the region close to the particle has been shown. The particle carries a surface
charge of the form: ζ(θ) = ζ̄0(a0 + a1µ), where a0 = a1 = 1/2 and ζ̄0 = 0.2. Other relevant parameters are:
δ = 0.005, β = De = 1, C = 1 and `2 = 200.

To complement the discussions in §4.4 of the manuscript, figure S1 here shows a represen-
tative contour plot of velocity magnitude, as computed from the numerical solutions for the
FENE-P constitutive model. Only the contours close to the particle surface have been shown,
while values of other relevant parameters have been mentioned in the caption. Notice the large
variations in |v| around the particle caused by two main factors: (i) the non-uniform charge
density on its surface and (ii) presence of a very thin EDL (δ = 0.005), which causes the velocity
to vary to rapidly within the Double layer.

S4 Polymeric stresses in the outer layer

To better understand the stress distribution in the bulk, we have now plotted the polymeric
stress (τ P ) at O(ζ̄20 ), for flow past a non-uniformly charged particle. The charge density is given
by: ζ̄ = a0 + a1µ (same as in the manuscript), whereas the polymeric stress (non-dimensional)
is governed by the following [3, 5]:

τ P +De
∇
τ P = 2

(
1− λ2

λ1

)
D (S19)

where D is the rate of strain tensor and the charactersitic stress has been chosen as: ηuc/a,
η being the total viscosity of the fluid, i.e., η = ηP + ηS. Here is should be noted that
ηP/η = C/(1+C) = 1−λ2/λ1, where C = ηP/ηS quantifies the polymeric viscosity as compared
to the solvent. The polymeric stress τ P has the expansion, τ P = ζ̄0τ

P
1 + ζ̄20τ

P
2 + ..., where
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Figure S2: Contour plots of polymeric stresses (τP ) at O(ζ̄20 ) around a particle carrying non-uniform surface
charge, where a0 = 0.5 and a1 = 1. Other relevant parameters are: De = 1, λ1 = 1, λ2 = 0.1, β = 1. We have
plotted (a) τPzz,2; (b) τPrr,2; (c) τPrθ,2 and (d) τPθθ,2.

τ P1 = 2
(

1− λ2
λ1

)
D1. Hence, the O(ζ̄20 ) correction becomes:

τ P2 = 2

(
1− λ2

λ1

)[
D2 −De

∇
D1

]
(S20)

For extensional stresses, we may further calculate the zz component as: τPzz,2 = τ P2 : êzêz.
Figure S2 depicts the contours of the four polymeric stress components at O(ζ̄20 ), namely τPzz,2
in (a), τPrr,2 in (b), τPrθ,2 in (c) and τPθθ,2 in (d), in the xz-plane, for a non-uniformly charged
particle with a0 = 0.5 and a1 = 1. Values of other relevant parameters have been given in the
caption. The O(ζ̄20 ) term is chosen, because this is the first correction to the polymeric stresses
because of the fluid’s viscoelastic nature. From subfigure (a), the fore-aft asymmetry because
of non-uniform charge distribution is visible. Further insight on breaking of fore-aft symmetry
has been provided in §4.3. Noting that the particle here is moving upwards, the normal stress
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in front of it is compressive, while behind the particle, τPzz,2 is positive, indicating polymer
stretching. Qualitiatively, this distribution of τzz is similar to previously reported studies in the
literature [6]. Similarly, the stress components in the spherical coordinate also show fore-aft
symmetry breaking. For instance from subfigure (b), one may note that rr-component of the
polymeric stresses are compressive in front of the particle and extensional in nature behind it
- similar to the behavior shown by the zz-component. On the other hand, the θθ-component
shows somewhat opposite behavior. This is because the flow has a “diverging” nature near the
north pole, while near the south pole it is converging, which results in τPθθ being extensional at
the front and compressive at the back.
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