Movie 1

Meridional (left) and $x=1$ (right) slice plane visualisations of a single period of the $|m|=1$ limit cycle oscillation at $(\operatorname{Re}, S)=(150,2.000)$ via instantaneous axial velocity contours and in-plane streamlines extracted from the volume $(x, r, \theta) \in[-1,5] \times[0,3] \times[0,2 \pi]$. Dotted lines show the planes' intersection and the dashed circle in the axial slice plane indicates the location of the pipe wall.

Movie 2

Meridional (left) and $x=1$ (right) slice plane visualisations of a single period of the $|m|=2$ limit cycle oscillation at $(\operatorname{Re}, S>)=(150,2.000)$ via instantaneous axial velocity contours and in-plane streamlines extracted from the volume $(x, r, \theta) \in[-1,5] \times[0,3] \times[0,2 \pi]$. Dotted lines show the planes' intersection and the dashed circle in the axial slice plane indicates the location of the pipe wall.

Movie 3

Meridional (left) and $x=1$ (right) slice plane visualisations of a single period of the $m=0$ limit cycle oscillation at $(\operatorname{Re}, S)=(300,1.987)$ via instantaneous axial velocity contours and in-plane streamlines extracted from the volume $(x, r, \theta) \in[-1,5] \times[0,3] \times[0,2 \pi]$. Dotted lines show the planes' intersection and the dashed circle in the axial slice plane indicates the location of the pipe wall.

Movie 4

Meridional (left) and $x=1$ (right) slice plane visualisations of a single period of the $|m|=3$ limit cycle oscillation at $(\operatorname{Re}, S)=(300,1.367)$ via instantaneous axial velocity contours and in-plane streamlines extracted from the volume $(x, r, \theta) \in[-1,5] \times[0,3] \times[0,2 \pi]$. Dotted lines show the planes' intersection and the dashed circle in the axial slice plane indicates the location of the pipe wall.

Movie 5

Meridional (left) and $x=2$ (right) slice plane visualisations of a single period of an $|m|=2$ limit cycle oscillation at $(\operatorname{Re}, S)=(200,2.000)$ via instantaneous axial velocity contours and in-plane streamlines extracted from the volume $(x, r, \theta) \in[-2,10] \times[0,6] \times[0,2 \pi]$. Dotted lines show the planes' intersection and the dashed circle in the axial slice plane indicates the location of the pipe wall.

Movie 6

Meridional (left) and $x=2$ (right) slice plane visualisations of a single period of an $|m|=1$ limit cycle oscillation at $(R e, S)=(200,2.050)$ via instantaneous axial velocity contours and in-plane streamlines extracted from the volume $(x, r, \theta) \in[-2,10] \times[0,6] \times[0,2 \pi]$. Dotted lines show the planes' intersection and the dashed circle in the axial slice plane indicates the location of the pipe wall.

37 Movie 7

38 Meridional (left) and $x=2$ (right) slice plane visualisations of a single period of an $|m|=2$ 39 limit cycle oscillation at $(R e, S)=(200,2.075)$ via instantaneous axial velocity contours and 40 in-plane streamlines extracted from the volume $(x, r, \theta) \in[-2,10] \times[0,6] \times[0,2 \pi]$. Dotted

Movie 8

Meridional (left) and $x=2$ (right) slice plane visualisations of a single period of an $|m|=2$ limit cycle oscillation at $(R e, S)=(200,2.073)$ via instantaneous axial velocity contours and in-plane streamlines extracted from the volume $(x, r, \theta) \in[-2,10] \times[0,6] \times[0,2 \pi]$. Dotted lines show the planes' intersection and the dashed circle in the axial slice plane indicates the location of the pipe wall.

Movie 9

Meridional (left) and $x=4$ (right) slice plane visualisations of a single period of an $|m|=2$ limit cycle oscillation at $(\operatorname{Re}, S)=(200,2.036)$ via instantaneous axial velocity contours and in-plane streamlines extracted from the volume $(x, r, \theta) \in[-4,20] \times[0,12] \times[0,2 \pi]$. Dotted lines show the planes' intersection and the dashed circle in the axial slice plane indicates the location of the pipe wall.

1. *Movie 10

Meridional (left) and $x=0.5$ (right) slice plane visualisations of a single period of the $|m|=1$ limit cycle oscillation at $(R e, S)=(300,2.766)$ via instantaneous axial velocity contours and in-plane streamlines extracted from the volume $(x, r, \theta) \in[-1,5] \times[0,3] \times[0,2 \pi]$. Dotted lines show the planes' intersection and the dashed circle in the axial slice plane indicates the location of the pipe wall.

