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Other supplementary material

In this supplement (Supplements A–E ), we present the technical details required
to reproduce the details of our analysis.

SupplementA. Hakkinen–Rott wake: higher-order scheme

To elucidate the structure of (3.2) and (3.5) in more detail, we have to match the
latter in the limit Z → 0 to the appropriate expansion

F :=
Ψ

Λ
1/3
0 X2/3

∼ fHR(η) +
c1X

1/3

Λ
4/3
0

[lnXF1(η) + F2(η)] +O
(
X2/3(lnX)2

)
(A 1)

holding for η = O(1) as X → 0+ and with F1,2 to be found. The logarithmic
contributions to (3.2)–(3.4) and (A 1), by anticipating c1,2 6= 0, comply with the
representation

Ψ ∼ Λ0Z
2/2 + P ′(0−)Z3/6 + (P − P−)[Λ

−1
0 + P ′(0−)Λ−2

0 Z lnZ +O(Z)] (A 2)

of (3.5). This is found with the help of (2.16), in the overlap 1 ≫ Z ≫ X1/3 or
X−1/3 ≫ η ≫ 1, see (3.1), with the expansion (A 1). There they cause a reordering
of its terms arising for large values of η, as seen from expressing Z in (A 2) in
terms of η:

F ∼ η2

2
+
P − P−

Λ
4/3
0 X2/3

+
P ′(0−)X1/3η

3Λ
4/3
0

{
η2

2
+
P − P−

Λ
4/3
0 X2/3

[
lnX+3 ln η+O(1)

]}
. (A 3)

As it is the HRW where the inertia terms in (2.14a) are fully restored, the
Z-independent contribution to Ψ in (A 2) is again in agreement with (2.14c).
Thus, matching the X-independent terms in (A 1) and (A 3) confirms that
fHR − η2/2 ∼ pHR +TST (η → ∞); matching the higher-order terms requires the
successive emergence of the logarithmic terms.
To this end, we substitute (A 1) into (2.14a)–(2.14c) and exploit (A 3) with

η ≫ 1 kept fixed. This reveals two inhomogeneous linear problems governing Fi

(i = 1, 2):

f ′
HRF

′
i − f ′′

HRFi − 2fHRF
′′
i /3 = F ′′′

i −Gi(η), Fi(0) = F ′′
i (0) = 0, (A 4a)

G1 := 1, G2 := 1 + c2/c1 + f ′
HRF

′
1 − f ′′

HRF1. (A 4b)

The well-known behaviour of fHR entails the essentially algebraic growth

F1 ∼ γ1(η
3 + 6 pHRη ln η) + δ1η − 6γ1 +G1 +O(η−1) (η → ∞) (A 5)

with some constants γ1, δ1. This is confirmed by expanding (A 3) up to
O(X1/3 lnX) provided that γ1 = 0 and c1 = pHRP

′(0−)/(3δ1). Then F
′′
1 (∞) = 0,

and (A 4) has a unique non-trivial solution in the case i = 1. The numerical
method and discretisation we used to compute fHR gives δ1 ≃ −2.6110, implying
c1 > 0. (We also note that F ′

1(0) ≃ −1.8422.) In turn, G2 = 1 + c2/c1 +TST
(η → ∞) so that (A 5) holds also for the corresponding quantities having
the subscript 2. Accordingly, expanding (A 3) up to O(X1/3) then gives
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γ2 = P ′(0−)/(6c1) = δ1/(2 pHR). This fixes the missing BC as F ′′
2 ∼ 3δ1η/pHR

(η → ∞). Adjusting F ′
2(0), however, allows this condition to be satisfied for any

c2, which can be determined by proceeding in this manner and considering the
abbreviated remainder terms in (A 1) and (A 3).

SupplementB. Outer Rayleigh problem: wavenumber space

We investigate the Rayleigh problem (3.22) in the distinguished limit T → 1−
and k → 0, for |Re k| → ∞ and the eigenspace (poles) of V in detail.

B.1. Singular limits k → 0, T → 1−
The analysis of the long-wave limit k → 0 is closely related to the discussion
of (3.15) with (3.16). We substitute the expansion V ∼ ∑∞

i=0 κi(k)Vi(y)
(κi+1/κi → 0) with, at first, unknown gauge functions κi and O(1)-functions
Vi into (3.22). At leading order, the problem (3.22) then only permits the
homogeneous solution parametrised by κ0, thus V0 = ψ′

0. To allow for deviations
from this, the analysis of V1 requires κ1 = O(k2κ0). Specifying κ1 := k2κ0 yields
the inhomogeneous problem

V ′′
1 − (ψ′′′

0 /ψ
′
0)V1 = ψ′

0, V1(0) = −κ−1
1 , u+

0 V ′
1(h0) = TJ, (B 1)

where we have anticipated that κ1 = O(1), including the alternative κ1 → ∞ as
k → 0 as a limiting case. By using the first BC here and after some rearrange-
ments,

V1(y)

ψ′
0(y)

= α1 − λκ−1
1

∫ h0

y

dt

ψ′2
0 (t)

+

∫ y

0

dt

ψ′2
0 (t)

∫ t

0

ψ′2
0 (s) ds. (B 2)

The initially arbitrary constant α1 indicates again a homogeneous solution and
the first BC in (B 1) is met in the limit y → 0. The second BC in (B 1) represents
a solvability condition for (B 1) as it gives

λκ−1
1 = (T − 1)J (B 3)

to fix κ0 = κ1/k
2 with κ1 = λ/[(T − 1)J ].

This analysis reveals a double pole of V at k = 0, the strength of which becomes
unbounded as T → 1. It refers to an apparent solution |X̄ |ψ′

0(y) (X̄ 6= 0) to the
homogeneous problem formed by (3.14a,c). Since k2 enters (3.22) linearly, the
above expansion is now specified as

V ∼ κ0(k)
∑∞

i=0
k2iVi(y), V0 = ψ′

0. (B 4)

and breaks down passively where y = O(k2). We solve the resulting hierarchy of
the inhomogeneous problems

V ′′
i − (ψ′′′

0 /ψ
′
0)Vi = Vi−1, Vi(0) = 0, u+

0
2 V ′

i(h0) = TJVi−1(h0) (i > 1) (B 5)

using the approach that leads to (B 2):

Vi(y)

ψ′
0(y)

= αi +

∫ y

0

dt

ψ′2
0 (t)

∫ t

0

ψ′
0(s)Vi−1(s) ds (B 6)

where the last BC in (B 5) fixes the constant αi−1 as a function of T in terms
of a solvability condition for the problem governing Vi−1. We finally write this
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constraint after some manipulations as the recursive relationship

Vi(h0)

u+
0

=
Ii

1− T
, Ii :=

1

J

∫ h0

0

ψ′2
0 (y) dy

∫ h0

y

dt

ψ′2
0 (t)

∫ t

0

ψ′
0(s)Vi−1(s) ds. (B 7)

Also, Vi (i > 0) is inversely proportional to 1− T .
Inspection of (3.14) reveals immediately the expansion V̄ ∼ ā+ψ

′
0(y) −∑∞

i=1 ā
(2i)
+ Vi(y) (X̄ → ∞), which completes (3.15) subject to (3.16) as the

reciprocal form to (B 4). From this, one infers that b̄+ = −α1.
The above analysis ceases to be valid when 1− T is so small that κ−1

1 = O(k2)
and thus no longer enters (B 1) but, instead, the problem governing V2. However,
the asymptotic series (B 4) captures this shift of the lower BC formally when we
introduce the (positive) parameter

T := (1− T )/k2 = O(1) (B 8)

to quantify the consequent least-degenerate distinguished limit. Then κ−1
1 is

replaced by 0 and T by 1 in (B 1), (B 2) such that (B 3) is satisfied identically.
Most importantly, the BCs in (B 5) are modified to

V2(0) = −κ−1
2 , Vi(0) = 0 (i > 2), u+

0
2 V ′

i(h0) = J [Vi−1 − T Vi−2](h0) (i > 1)
(B 9)

where we take κ2 = k4κ0 as of O(1). Hence,

V2(y)

ψ′
0(y)

= α2 − λκ−1
2

∫ h0

y

dt

ψ′2
0 (t)

+

∫ y

0

dt

ψ′2
0 (t)

∫ t

0

ψ′
0(s)V1(s) ds. (B 10)

The special form of the dynamic BC in (B 9) determines the value of the constant
αi−2 for i > 2. It is sufficient for our purposes to concentrate on this BC for i = 2.
As V1 is given by (B 6) for i = 1, this solvability condition for (B 10) yields, with
V0 specified in (B 4) and the definitions of I1 in (B 7) and T in (B 8), and after
some rearrangements, an expression for κ2 and thus κ0, independent of the value
of α1:

Jκ0/λ = k−2[k2I1 − (1− T )]−1. (B 11)

We find that the distinguished limit (B 8) is rich enough to disclose the be-
haviour of V near the critical point k = 0 and T = 1 (although the last situation is
excluded in this study). First, one readily finds that V admits a regular expansion
in T − 1 as T → 1 for k 6= 0 or T → 0. It is seen that V attains a fourth-order
pole in k = 0, T = 1 which morphs into a double pole for T < 1, here recovered in
the limit T → ∞ where the two forms of (B 4) considered match. This behaviour
is associated with the bifurcation of a simple pole for k becoming positive, whose
location we trace in the (T, k)-plane as

k = ku(T ), (B 12)

indicating the existence of undamped capillary oscillations, where T ∼ I1 or

T ∼ 1− I1k
2
u +O(k4u) (ku → 0). (B 13)

As suggested by these asymptotic findings, our numerical study predicts exactly
one value of k2 = k2u for each value of T in the relevant interval 0 < T < 1. We
also infer from V ∼ Resk=ku

(V)/(k − ku) (k → ku), (B 4), (B 11) and (B 13) that

Resk=ku
(V)/ψ′

0(y) ∼ λ/(2JI1k
3
u) ∼ λ I1/2

1

/[
2J(1 − T )3/2

]
(ku → 0). (B 14)
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Figure S 1: Plots of (a) poles and (b) variation of V near k = 0, T = 1.

The amplitude āu, see (3.25), varies predominantly with k−14/3
u or (1− T )−7/3 in

this limit. To exploit the above results numerically, we specify ψ′
0 by Watson’s

flow, using (2.7) with xv = −1. Then I1 can be transformed into a single integral,
and we add

J = λ, I1 =
2

u+
0

− 1

λh0

− 1

λ
+ λ

∫ h0

0

[
1

ψ′2
0 (y)

− 1

(λy)2

]
dy ≃ 0.307059. (B 15)

The relationships (B 13)–(B 15) set the basis for (3.26a).
The above results can be nicely captured on the basis of (B 8) and (B 11)

cast in the normal form κc = 1/[k2c (k
2
c − 1)] employing the canonical variables

kc := [I1/(1− T )]1/2k, κc := J(1− T )2κ0/(λI1): see figure S 1.

B.2. Singular short-wave limit |Re k| → ∞
For |Re k| → ∞, V obviously varies exponentially weakly with k. We first identify
a viscous sublayer ζ := ky = O(1) where we take V as a function of ζ and k. There
(3.22a) and (2.5) give ∂ζζV − V ∼ ωζV/k3 +O(k−6). In turn,

V ∼ e e−ζ

[
1− ω

4k3
(ζ+ζ2)+O(k−6)

]
−(1+e) eζ

[
1− ω

4k3
(ζ−ζ2)+O(k−6)

]
(B 16)

where e is some function of k satisfying e(−k) ≡ −e(k)− 1 as (3.22) enforces
symmetry of V with respect to k. For y = O(1), the exponential variation in
(B 16) is morphed into a rapid one, typically captured by a Wentzel–Kramers–
Brillouin–Jeffreys (WKBJ) ansatz. Inserting this into (3.22a,c) yields after some
manipulations and exploiting the above symmetry property intrinsic to (3.22)

V
E(k)

∼ e−k(y−h0)

[
1−K0 −K(y)

2k
+O(k−2)

]
−ek(y−h0)

[
1+

K0 −K(y)

2k
+O(k−2)

]
,

(B 17)
skew-symmetric in k and depending solely on the homogeneous BC (3.22c). The
asymptotic relationship E(k) ≡ −E(−k) follows from matching (B 16) and (B 17)
as e(k), and

K(y) :=

∫ h0

y

ψ′′′
0 (t)

ψ′
0(t)

dt, K0 :=
2u+

0
2

TJ
. (B 18)
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The last constant of integration ensures that (3.22c) is satisfied with the accuracy
specified in (B 17) and (B 16), where the terms varying algebraically with k
originate in the vorticity of the base flow.
Expanding K for y → 0 with the help of (2.5) confirms the match of (B 16) and

(B 17), up to contributions of respectively O(k−3) and O(k−1) in the brackets.
This first yields two relationships involving e and E: e ∼ E ekh0 [1 − K0/(2k) +
O(k−2)], 1 + e ∼ E e−kh0 [1 +K0/(2k) +O(k−2)]. From these we infer

e−1 ∼ −1 + e−2kh0A(−k)/A(k), E−1 ∼ e−kh0A(−k)− ekh0A(k) (B 19)

where we abbreviate the algebraic variations with k in terms of

A(k) ∼ 1−K0/(2k) +O(k−2) (k → ±∞). (B 20)

The first of the relations (B 19) verifies that V = O(1) in (B 16) and the second
the exponential smallness of V for y ≫ 1/|k|. From (B 17), there

V ∼ −e∓ky

[
1− K(y)

K0 ∓ 2k
+O(k−2)

]
+e∓k(2h0−y)

[
1−2K0 −K(y)

K0 ∓ 2k
+O(k−2)

]
(B 21)

where the exponentially weak remainder term is of O
(
e∓k(y+2h0)

)
. Therefore,

V(k, h0) ∼ −2 e∓kh0
[
K0/(K0 ∓ 2k) +O(k−2)

]
+O

(
e∓3kh0

)
(B 22)

with the aid of (B 18).
As seen from (B 19) and (B 20), the O(k−2)-terms in (B 21) and (B 22) are

correct as long as E ∼ − e−kh0/A(k) or |A(k)| ≫ | e−2kh0 | for Re k > 0 and
E ∼ ekh0/A(−k) or |A(−k)| ≫ | e2kh0 | for Re k < 0. However, they increase up
to O(k−1) when these constraints are violated, that is, when both contributions
to E−1 in (B 19) become of the same order of magnitude or

k ∼ ±K0/2 +O(T ). (B 23)

The expression for K0 in (B 18) heralds this possibility when T is so small that
Tk ∼ ±u+

0
2/J +O(T 2). Moreover, E−1 might change sign then, which reveals the

emergence of a real pole of V that represents the small-T asymptote of (B 12).
Hence, the trace of the pole is known in a first approximation as weak deviations
must account for its weak straining due to the higher-order corrections in (B 21):

Tku[1 +O(k−1
u )] = u+

0
2/J =

√
3/(4π) Γ(1

3
)/Γ(5

6
) ≃ 1.15960 (ku → ∞) (B 24)

when u+
0 and J are evaluated for Watson’s flow by (2.8). Concomitantly, (B 21)

yields with K0 ∼ 2ku +O(1) from (B 23)

Resk=ku
(V) ∼ − e−kuy

[
K(y)/2 +O(k−1

u )
]
+ eku(y−2h0)[2ku +O(1)]. (B 25)

In turn, and as also obtained directly from (B 22),

Resk=ku
[V(k, h0)] ∼ e−kuh0

[
2ku +O(k−1

u )
]
+O

(
e−3kuh0

)
. (B 26)

These delicate consequences of matching exponentially varying terms verify a-
posteriori the inclusion of the algebraically varying ones.
The asymptotic behaviours (B 24) and (B 26) are condensed into (3.26b) as

substituting them into (3.25), specified for Watson’s flow, results in

āuk
2/3
u exp(kuh0) → 8π Γ(2

3
)
[
Γ(5

6
)/Γ(1

3
)
]2 ≃ 6.0422 (ku → ∞). (B 27)
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Dividing this limiting value by u+
0 gives 16π2Γ(2/3)[Γ(5/6)/Γ(1/3)]2 ≃ 6.7402,

which is finally used in (3.27) when evaluated for T ≪ 1.

B.3. Eigenspace and poles

As an important aspect shown next, for any T > 0, the homogeneous version
of (3.22) is solvable only for a countable, infinite set of real eigenvalues of k2

bounded from above.
We let V̄k(y) symbolise the space of eigenfunctions,

V̄ ′′
k = (k2 + ψ′′′

0 /ψ
′
0)V̄k, y = 0: V̄k = 0, y = h0 : ψ′2

0 V̄ ′
k = TJk2V̄k. (B 28)

In §B.1, we considered the eigenvalue k = 0 and the associated double pole. All
other eigenvalues are expected to define the simple poles of V in the k-plane:
an infinite number of conjugate imaginary and an, at most finite, number of
real ones, these associated with isolated neutral capillary modes. To demonstrate
these fundamental properties, we first consider two twice differentiable functions

U(y), W(y) and the typical inner product
∫ h0

0
U W dy; in the following, overbars

unambiguously indicate complex-conjugates. One readily confirms that the op-
erator (d2/dy2 − ψ′′′

0 /ψ
′
0)U subject to U(0) = U ′(h0) = 0 is self-adjoint, but the

appearance of the eigenvalue k in the BC at y = h0 impedes proving its typically
expected properties in standard fashion if T > 0: k2 is real; members of Vk for
different eigenvalues are orthogonal with respect to the above inner product.
Rather, if U and W now denote eigenfunctions for different eigenvalues k1 and
k2, say, we obtain from (B 28) via integration by parts

(k21 − k̄22)

[
TJ(U W)(h0)

ψ′2
0 (h0)

−
∫ h0

0

U W dy

]
= 0. (B 29)

This prompts us to seek a transformation of (B 28) such that k no longer enters
the BC for y = h0. To this end, we introduce the transformed eigenfunctions
Fk := ψ′

0V ′
k − ψ′′

0Vk. We then obtain from (B 28)

[ψ′2
0 (V̄k/ψ

′
0)

′]′ ≡ F ′
k = k2ψ′

0V̄k (B 30)

and, since ψ′′
0 (h0) = 0, ψ′2

0 Fk = TJF ′
k for y = h0. Differentiation of (B 30) after

division by ψ′2
0 casts (B 28) into the form

(−F ′
k/ψ

′2
0 )

′ = −k2Fk/ψ
′2
0 , y = 0: Fk = 0, y = h0 : ψ′2

0 Fk = TJF ′
k. (B 31)

Adopting the signs in the usual notation, (B 31) represents a traditional self-
adjoint Sturm–Liouville eigenvalue problem with the (for y → 0 singular) weight
function ψ′−2

0 for the eigenvalues of −k2. According to classical results, these
indeed form a discrete set k2 = k2i (T ) (i = 0, 1, . . .) bounded from below and
satisfying the Weyl asymptotics −k2i ∼ (πi/h0)

2 +O(i) (i→ ∞), controlled by
the right-side of the BC for y = h0 (cf. Teschl 2012). Here k20 = k2u > 0, referring
to the single neutral mode considered in §B.2, so that k2i is set to −µ2

i (T ) < 0 for
i > 0. It is also noteworthy that this sequence µi does not collapse in the limiting
case T = 1 as µ1(1) ≃ 0.015569.

SupplementC. Outer Rayleigh problem: diffusive overlayer

Let us take ψ, p, h+ as functions of X̄, ξ, ǫ. We rectify the Maclaurin expansion of
ψ and p for ξ = O(1) justified by (2.3c), (3.10), (3.11) by adding an O(ǫ5/3)-term
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(and resultant higher-order corrections) that involves the O(1)-functions Ψ ∗, P ∗

so as to account for (2.3d):

[ψ, p] ∼ [1, P0(X̄)] +
∞∑

i=1

[Ψi, Pi](X̄ ; ǫ)
ǫi/2ξi

i!
+ ǫ5/3[Ψ ∗, P ∗](X̄, ξ) +O(ǫ12/7). (C 1)

The structure of (C 1) is explained in the following.
The bounded coefficient functions Ψi, Pi (i > 0) ensue from expanding (3.10),

(3.11) together with (2.6) and the resultant property ψ′′′′
0 (h0) = 0 (see SBP18).

One obtains

Ψ1 ∼ u+
0 + ǫ4/7m[ψ∗ −mψ′′′

0 (h0)A
2(0)/2] + ǫ2/3 Ψ̄y(X̄, h0) +O(ǫ5/7), (C 2a)

Ψ2 ∼ ǫ4/7m[ψ′′
∗ − ψ∗ψ

′′′
0 /u

+
0 ](h0) + ǫ2/3[ψ̄yy(X̄, h0) + H̄ψ′′′

0 (h0)] +O(ǫ5/7),
(C 2b)

[P ′
0, P

′
1] ∼ ǫ2/3[P̄X̄ , P̄yX̄ ](X̄, h0) +O(ǫ5/7), P1,2 = O(ǫ4/7), h+,X̄ = O(ǫ3/7).

(C 2c)

Substituting (C 1) into the shear-layer approximation of (2.3a),

ψξψξX̄ − ψX̄ψξξ ∼ −ǫ pX̄ − ǫ1/2h+,X̄ pξ + ǫ1/2ψξξξ (C 3)

(the Prandtl shift preserves the convective operator), and collecting powers of ξ
yields a hierarchy of relations involving Ψi and Pi. Insertion of (C 2) into the first
two,

Ψ1Ψ1,X̄ ∼ −P0,X̄ − h+,X̄P1 − ǫ Ψ3, Ψ1Ψ2,X̄ ∼ −P ′
1 − h+,X̄P2 − ǫ Ψ4, (C 4)

just confirms the two-terms expansion of the streamwise momentum equation
in (3.12) for ξ = O(1). On the other hand, the left-hand side of (2.3d) reduces
to Ψ2 − u+

0 h+,X̄X̄ +O(ǫ23/21) within the accuracy provided by (3.10), (3.11) and
(C 2). Evaluating (2.3d) by using (C 2b) and (3.10) shows that this BC is satisfied
up to O(ǫ4/7) oncem[ψ′′

∗−ψ∗ψ
′′′
0 /u

+
0 ](h0)+ml

2u+
0 (G−P−) = 0. This constraint for

ψ∗ must already be provided by the surrounding shear layer addressed in SBP18.
However, the follow-up contributions of O(ǫ2/3) to (2.3d) yield in connection
with (3.14c) the residual (Ψ̄yy − Ψ̄X̄X̄)(X̄, h0). Compensating for this requires the
perturbation stream function Ψ ∗ to enter (C 1) at the same order of approximation
as the O(ǫ2/3)-contribution to P2. In turn, (C 3) subject to (2.3c) and (2.3d) yields
with the aid of (C 2) the diffusion problem

u+
0 Ψ

∗
ξX̄ = Ψ ∗

ξξξ, ξ = 0: Ψ ∗ = 0, Ψ ∗
ξξ = Ψ̄X̄X̄−Ψ̄yy, ξ → −∞ : Ψ ∗

ξξ → 0. (C 5)

This also implies, for ξ → −∞, a vanishing velocity perturbation Ψ ∗
ξ but fi-

nite viscous displacement exerted in the bulk flow, measured by Ψ ∗(X̄,∞).
The far-upstream and far-downstream asymptotes of Ψ ∗ are found to be forced
by the inhomogeneous BC. Therefore, Ψ ∗ dies out exponentially for X̄ → −∞
and grows algebraically for X̄ → ∞. We then use (3.13), (3.15) and (3.16) to
describe the merge with the original overlayer (see SBP18) in this limit by
Ψ ∗ ∼ 27λψ′′′

0 (h0)/(80Mu+
0 )X̄

11/3F∗(η∗) +O(X̄5/3). Herein, the typical Rayleigh

variable η∗ := ξ
√
u+
0 /X̄ is of O(1) as F∗ satisfies

19F ′
∗/6 − η∗F

′′
∗ /2 = F ′′′

∗ , F∗(0) = 0, F ′′
∗ (0) = 1, F ′′

∗ (−∞) = 0. (C 6)

The solution to this problem can be expressed in terms of Kummer’s confluent
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hypergeometric function, M :

F∗(η∗) = (3/11)[M(− 11
3
, 1
2
,−η2∗/4)− 1]− η∗M(− 19

6
, 3
2
,−η2∗/4)

/
Γ(25

6
). (C 7)

Far downstream, the viscous displacement is quantified by F∗(−∞) = −3/11.
Adopting the results of § 3.3.2, one may expresses the full solution to (C 5) as the
Fourier integral

Ψ ∗ =

∫

C

[k2V + Vyy](k, h0)

u+
0 k

2

(
1− e

√
iu+

0 k ξ
)
eikX̄ dk. (C 8)

A final remark on the higher-order corrections in (C 1) reinforces the self-
consistency of the above flow description. The kinematic BC (2.3c) induces an
O(ǫ5/3)-disturbance in the expansions of h+ in (3.10) and thus the capillary
pressure jump in (2.3d) such a term in (3.11). This produces the non-zero P ∗

in (C 1). In addition, (2.3b) gives P ∗
ξ ≡ 0.

SupplementD. Extended Jefferey–Hamel limit

We address briefly two formal aspects of the JH limit.
At first, inspection of (4.4) suggests the local expansion

ψ̄ ∼ ḡ(ϑ) + r̄σG(ϑ) + o(r̄σ) + c.c., Reσ > 0. (D 1)

Here σ denotes the eigenvalue and G the corresponding eigenfunction satisfying
the resulting eigenvalue problem

[
σ2(σ − 2)ḡ′ − σḡ′′′

]
G− 2ḡ′′G′ + (σ − 2)ḡ′G′′ =

[
(σ − 2)2 + d2/dϑ2

]
(σ2G+G′′), (D 2a)

G(0) = G′(0) = G(π) = G′(π) = 0. (D 2b)

In (D 1), σ then specifies the member of the discrete series of eigenvalues with
minimum positive real part. The validity of the JH solution and thus the local
representation (D 1) of the full NS solution depends on the existence of this value
of σ.
Secondly, we envisage p̄ and h̄, related via the dynamic BC in (4.3c), near r̄ = 0.

The pressure gradient ensues from the momentum equations (4.3a,b) in the form
p̄r̄ ∼ (ḡ′′′ + ḡ′2)/r̄3 = [ḡ′′′(π)− 4ḡ′]/r̄3, where the last equality follows from (4.6)
upon integration, and p̄ϑ ∼ 2ḡ′′/r̄2. Finally,

p̄ ∼ 4ḡ′ − ḡ′′′(π)

2r̄2
+ o(r̄−2) (r̄ → 0), h̄ ∼ ḡ′′′(π)

2τ
ln x̄ (x̄→ 0+) (D 3)

with g′′′(π) ≃ 87.9545 (ḡ′′′(π) ≃ 19.6983) for the attached (detached) eddy and
for any finite value of τ . These singularities are much stronger than those found
for the alternative, preferred Stokes limit elucidated in § 4.2.2 and below in
SupplementE. Accordingly, their resolution would take place in a further NS
region defined by the smallest scales, describing the microscopic resolution of the
trailing edge.
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SupplementE. Extended Stokes limit

Separation of variables in (4.7) yields

ψ̄ ∼
∑∞

i=0
ψ̄i +O(r̄σn+σq ) + c.c., ψ̄i := r̄σifi(ϑ), Reσi+1 > Re σi > 0. (E 1)

Herein, σi denotes the i-th eigenvalue, fi the corresponding eigenfunction of the
azimuthal variation, and the remainder term arises from the dominant contribu-
tion to the quadratic inertial terms in (4.4), not captured by the Stokes balance
and of O(r̄σn+σq−3). Therefore, n and q stand for the lowest indices i such that fn,
fq are both non-trivial and their coupling produces a non-trivial inhomogeneity.

E.1. Discussion of eigensolutions and their inertially induced response

The expansion (E 1) casts the biharmonic problem into the series of eigenvalue
problems

Si{fi} = fi(0) = f ′′
i (0) = fi(π) = f ′

i(π) = 0, (E 2a)

Si{Q} :=
[
(σi − 2)2 + d2/dϑ2

](
σ2
i + d2/dϑ2

)
{Q} (E 2b)

for any function Q. The reduced Stokes operator Si acting on ϑ and parametrised
by the discrete eigenvalues is already seen in (4.6) as this replaces (E 1) for σi = 0.
One readily finds that (E 2) has no solution in the degenerate cases σi = 1 and
σi = 2. In any other case, the first two BCs in (E 2a) yield

fi = ai sin(σiϑ) + bi sin[(σi − 2)ϑ], (E 3a)

where the constants ai and bi are functions of Λ0, are determined by the global
solution to (4.3) and must not all be zero. Notably, the sin(σiϑ)-term refers to a
potential-flow contribution. The eigenvalue relation sin(2σiπ) = 0 equivalent to
the last two BCs implies

σi = (1 + i)/2. (E 3b)

In turn, (E 3a) holds for some real ai and bi satisfying

bi = −ai (i = 0, 2, 4, . . .), (2− σi)bi = σiai (i = 1, 3, 5, . . .), (E 3c)

which confirms that f1 ≡ f3 ≡ 0 and a2f0 ≡ a0f2 and, a-posteriori, the validity of
(E 1). Here we refer to the subsequent discussion in §E.2. As σi take on integer
values for i being odd, it is readily seen that exactly this category refers to regular
eigensolutions ψ̄i. Their series, ordered by ascending integer powers in x̄ and ȳ,

ψ̄5 = −4a5ȳ
3, ψ̄7 = −8a7x̄ȳ

3, ψ9 = 40a9ȳ
3(ȳ2/15 − x̄2/3), . . . , (E 4)

ensues systematically from expressing ∆̄2 accordingly and using the BCs. We also
infer from (4.7), (E 2) and (E 3a) that

p̄−p̄0 ∼
∑∞

i=0, i6=3
r̄σi−2pi(ϑ)+O

(
r̄σn+σq−2

)
, pi = 4bi(σi−1) cos[(σi−2)ϑ]. (E 5)

The constant p̄0 is again to be extracted from the complete NS solution.
The symmetry of fi in i around i = 1 and its azimuthal symmetry/antisymmetry

with respect to ϑ = π/2 for odd/even values of σi (i.e. odd values of i) deserve a
comment. The first eight members of the series fi with ai set to unity are plotted
in figure S 2. One then finds that f0 > 0, f5 6 0, and fi(ϑ) changes its sign
(i − 2)/2 times if i = 4, 6, . . . and (i− 5)/2 times if i = 7, 9, . . . over the interval
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Figure S 2: Eigenfunctions fi of Stokes operator and their symmetry properties,
see (E 3): ai = 1, labels indicate i = 0, 2, 4, 6, 8 (dashed), i = 5, 7, 9 (solid).

(0,π). Therefore, exactly three alternatives can accommodate the forward-flow
condition (4.5):
(A) a0 > 0;
(B) a0 = 0 and a2 > 0;
(C) a0 = a2 = a4 = 0 and a5 < 0.
We now proceed to demonstrating that case (C) is the appropriate choice. To

this end, we conveniently restate (E 1) in general more precisely as

ψ̄ ∼
∑∞

i=0
r̄σigi(ϑ), g0 := f0, (E 6)

where the functions gi represent the solutions to the hierarchy of inhomogeneous
Stokes problems provoked by the inertia terms in (4.4), which cause the remainder
term in (E 1). As we now demonstrate, the forcing of these eigensolutions of the
Stokes operator by the higher-order, convective terms controls the selection of
the leading non-zero coefficient ai of the homogeneous contribution fi to gi. Sub-
stituting (E 6) into (4.4) and collecting powers of r̄ results in the inhomogeneous
extension of (E 2) for i > 0:

Si{gi} = Ii(ϑ) :=
∑i−1

j=0
Ii,j(ϑ), (E 7a)

Ii,j(ϑ) :=
[
(σj − 2)g′k − σkgk d/dϑ

]
(σ2

j gj + g′′j ), k := i− j − 1, (E 7b)

gi(0) = g′′i (0) = gi(π) = g′i(π) = 0, (E 7c)

where (E 7b) is consistent with the identity σj + σk ≡ σj+k+1, see (E 3b). The
self-adjointness of the homogeneous Stokes operator defined by (E 2) gives

0 =

∫ π

0

Si{gi}fi(ϑ) dϑ = Si :=

∫ π

0

Ii(ϑ)fi(ϑ) dϑ. (E 8)

This describes the well-known three alternatives: the solution of (E 7) is unique if
fi ≡ 0; it is non-unique if fi is non-trivial and Si = 0; it does not exist otherwise.
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Thus (E 8) establishes the following analysis of the possible cases concerning the
solvability of (E 7).
Case: a0 6= 0. In this least-degenerate scenario including case (A) above, (E 6)

is specified as ψ̄ ∼ r̄1/2f0 + r̄g1 + r̄3/2g2 +O(r̄2); (E 3) implies f0 = a0[sin(ϑ/2)+
sin(3ϑ/2)] and (E 7b) I1 = 3a20[sin(2ϑ)/2 + sin(3ϑ)]. Since f1 ≡ 0, we construct
for i = 1 the unique solution g1 = a20[37 sin(ϑ) + 32 sin(2ϑ) + 9 sin(3ϑ)]/192 of
(E 7). In turn, we specify (E 7) and (E 8) for i = 2. A tedious but straightforward
calculation involving g1 and f2 ≡ a2f0/a0 yields S2 = −25πa20a2/128 so that g2
does not exist. We are thus left with the following less singular situation.
Case: ai = 0 (0 6 i < n), an 6= 0. Here n identifies the index of the dominant

non-trivial eigensolution so that gn = fn. Accordingly, (E 7b) produces non-trivial
Ii,j for j, k > n only. This confirms that Ii ≡ 0 (0 6 i 6 2n) as the self-coupling
of fn yields the potential lowest-order inhomogeneity

I2n+1 = I2n+1,n = −4bn(σn−1)(σn−2)
{
anσn sin(2ϑ)+ bn sin[(2σn−4)ϑ]

}
, (E 9)

which corresponds to the case n = q in (E 1). It is emphasised that I2n+1 vanishes
identically only for n = 1 (σ1 = 1), n = 3 (σ3 = 2) and n = 5 (σ5 = 3). Further-
more, (E 8) gives after some standard manipulations, involving σn and and σ2n+1

specified by (E 3b),

S2n+1 =

{
0 (n 6= 2),

3πa22a5/2 (n = 2).
(E 10)

The last statement requires a2 = 0. This renders the forward-flow case (B) also
not possible. Hence, the scenario (C) motivates the following discussion of the
special case n = 5.
Case: ai = 0 (0 6 i < 5), a5 6= 0. The result (E 10) includes that the here dom-

inant eigensolution of the Stokes operator ψ̄5 given by (E 4), describing a non-
degenerate flow profile at separation, trivially generates a vanishing inhomogene-
ity I11. That said, (E 6) then degenerates and reads more accurately, with the
help of (E 3b),

ψ̄ ∼ ψ̄5 +
∑∞

i=q
r̄(1+i)/2fi + r̄(7+q)/2g6+q + o

(
r̄(7+q)/2

)
(q > 5, aq 6= 0). (E 11)

At first, any index q > 5 is conceivable. If (E 11) initiates the solution to the full
NS problem, such an index indicating the non-trivial follow-up term to r̄3f5 must
exist. As a central observation, the lowest-order inhomogeneity in (E 7a) specified
by (E 7b) is I6+q = I6+q,5 + I6+q,q and produces g6+q, where the eigenfunction f6+q

corresponds to to the eigenvalue σq+6 = (7 + q)/2. Inserting these findings into
(E 8) yields indeed S6+q ≡ 0 as for (E 10) but for any q, where we skip the technical
details. This guarantees the existences of gq+6 and, in turn, of (E 11).
As an important step, the above analysis determines the least singular (most-

degenerate) local representation of ψ̄ to be given by case (C) extended by (E 11) as
the sole reliable option satisfying (4.5). It should be emphasised that the impact
of the interactive flow on flow detachment on the NS scales is condensed into the
aforementioned (pending) dependence of the coefficient a5 on Λ0.
The shear rate at the plate immediately upstream of detachment observed on

the global scale reads uy|y=0 ∼ ψ̄ϑϑ(r̄,π)/r̄
2, according to (4.1) and (4.3d). Since

(E 3) entails f ′′
i (π) = 0 for odd i, cf. (E 4), and f ′′

i (π) = 2ai(−1)i/2(1− i) for even
i, it is dominantly fixed either by the eigenfunction fj of the smallest even index,
j > 6, that enters (E 11) or g6+q. With dots abbreviating smaller terms, that shear
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rate tends to zero in the form

uy|y=0 ∼ 2aj(−1)j/2(1− j)(−x̄)(j−1)/2 + (−x̄)(3+q)/2g′′6+q(π) + · · · (x̄→ 0−).
(E 12)

Since (4.5) requires uy|y=0 > 0 here, we expect either aj > 0 (aj < 0) for
j = 6, 10, 14, . . . (j = 8, 12, 16, . . .) or f ′′

6+q(π) behaves such that g′′6+q(π) > 0.
Typically, the adverse pressure gradient predicted by (E 5) in the form
p̄− p̄0 ∼ −24a5x̄+O

(
r̄(q−3)/2

)
initiates flow detachment. Finally, this together

with (E 11) and (4.3c) results in (4.8).

E.2. Eigensolutions of the Stokes operator having weakly non-algebraic radial
variation?

Given the absence of a reference length and velocity of the Stokes limit considered,
typical dimensional reasoning predicts, in general, algebraic–logarithmic varia-
tions of the gauge functions in (E 1) with r̄. Nonetheless, the following analysis
confirms that factors with sub-algebraic (logarithmic) dependence on r̄ do indeed
not contribute to (E 1).
Seeking eigensolutions of the biharmonic operator in the limit r̄ → 0 first leaves

one with a generalisation of the expansion (E 1) into eigenfunctions:

ψ̄ ∼
∑∞

i=j=0
r̄σiχi,j(r̄)fi,j(ϑ), χi,j+1 = o(χi,j). (E 13)

Herein, fi,j indicates the double series of eigenfunctions, with fi,0 = fi as we
found so far, due to the corresponding sought gauge functions χi,j exhibiting sub-
algebraic variation, including the previous situation χi,0 ≡ 1 and fi,j ≡ χi,j ≡ 0
for j > 0. Following the analysis of Scheichl (2014) of the Laplace operator, for
any such function Ξi,j := r̄χ′

i,j is of o(χi,j) and again belongs to this family of
functions. With this relation in mind, we obtain after some rearrangements

∆̄2(r̄σiχi,jfi,j) ∼ Ξi,jJi,j(ϑ) + o(Ξi,j), Ji,j(ϑ) := 4(σi − 1)[f ′′
i,j + σi(σi − 2)fi,j ]

(E 14)
(agreeing with the symmetry of fi,j in σi with respect to σi = 1). In turn, we
specify χi,1 = −Ξi,0. If χi,1 does not vanish identically, the homogeneous problem
determining fi yields the inhomogeneous follow-up problem fixing fi,1 according
to (E 2)

Si{fi,1} = Ji,0(ϑ), fi,1(0) = f ′′
i,1(0) = fi,1(π) = f ′

i,1(π) = 0. (E 15)

Since the homogeneous operator in (E 15) and defined by (E 2) is self-adjoint,

0 =

∫ π

0

Si{fi,1}fi(ϑ) dϑ =

∫ π

0

Ji,0(ϑ)fi(ϑ) dϑ = 8π(−1)i(σi − 1)aibi (E 16)

with the aid of (E 3). This contradiction implies χi,0 ≡ 1, χi,1 ≡ 0 and, by itera-
tion, χi,j ≡ 0 for all j > 0. Consequently, the appearance of sub-algebraic factors
in (E 1) is indeed ruled out.


