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S1 Transformation Procedure

1. Transformation of Independent Variables: We transform the independent variables using their characteristic

scales. The scale for t∗ is
1

ω
, giving us t = ωt∗. The scales for the other independent variables are dependent

upon the geometry and imposed dynamics being considered, which are divided into two categories - α≪ 1 and
α ∼ 1. Here, we emphasize two points. First, the scale for z̄∗ is taken as δR, giving us z̄∗ = δRz̄, where the
expression for δ is obtained out of considerations for the deformation characteristics, as presented in section
2.6. Second, the scale of r∗ is the same in the fluid domain and the substrate domain, as the load on the
substrate comes from the fluid domain.
We first consider the case of α ≪ 1, i.e. the range of motion of the sphere is small compared to its mean
separation from the origin. For this case, the scale for z∗ is D = ϵR, giving us z∗ = ϵRz. Subsequently,
following the classical lubrication methodology (Urzay, 2010; Leal, 2007), the scale for r∗ is

√
RD = ϵ

1
2R,

giving us r∗ = ϵ
1
2Rr.

Next, we consider the case of α ∼ 1, i.e. the sphere displacement over its range of motion is comparable to its
mean separation from the origin. The prime consequence of α ∼ 1 is that the scale for z∗ is,

z∗ ∼ d(t∗) =

 D + h0 cos(ωt
∗) = (1 + α cos(ωt∗))ϵR oscillatory,

D + h0(1− ωt∗) = (1 + α(1− ωt∗))ϵR approach,
D − h0(1− ωt∗) = (1− α(1− ωt∗))ϵR recession,

 = k(t∗)ϵR,

giving us z∗ = k(t∗)ϵRz. Again, following the classical lubrication methodology, the scale for r∗ is
√
Rd =

k(t∗)
1
2 ϵ

1
2R, giving us r∗ = k(t∗)

1
2 ϵ

1
2Rr. We note that the expression for δ for this case can be time-dependent

as well, i.e. δ = δ(t∗) (see section 2.6).

2. Transformation of Derivatives: When we consider time-dependent scales for the independent spatial variables
for the physical setup, as done in the case of α ∼ 1 above, it is equivalent to performing a transformation of
the system domains such that the z∗ in the original system scales to a unity-scaled z in the mapped system.
The consequence of this mapping is the transformation, in the governing equation and boundary conditions, of
independent variables as per the expressions presented in the last step (as well as in table 1), and in derivative
terms as per transformation template we will derive ahead.
In table S1, under the column ‘forward’, we present how the independent variables in the mapped co-
ordinate system (r, z, z̄, t) are expressed in terms of the independent variables in the original coordinate system
(r∗, z∗, z̄∗, t∗). Under the column ‘backward (partial)’, we present how the independent variables in the origi-
nal coordinate system are expressed in terms of the independent variables in the mapped coordinate system.
These expressions are obtained simply by doing trivial algebra on the expressions for the independent variables
in the mapped coordinate system in terms of the independent variables in the original co-ordinate system.
Examining the expressions in the column ‘backward (partial)’, we can see that the independent variables in
original coordinate system are not expressed exclusively in terms of the independent variables in the mapped
coordinate system, due to the presence of functions of t∗, k(t∗) and δ(t∗). To remedy this, we take the help
of the last row in the table S1 and observe that a general function of t∗ in the original coordinate system
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Table S1: Forward and Backward Mapping from (r∗, z∗, z̄∗, t∗) to (r, z, z̄, t)

forward backward (partial) backward

r =
r∗

k(t∗)
1
2 ϵ

1
2R

r∗ = k(t∗)
1
2 ϵ

1
2Rr r∗ = k(t)

1
2 ϵ

1
2Rr

z =
z∗

k(t∗)ϵR
z∗ = k(t∗)ϵRz z∗ = k(t)ϵRz

z̄ =
z̄∗

δ(t∗)R
z̄∗ = δ(t∗)Rz z̄∗ = δ(t)Rz

t = ωt∗ t∗ =
t

ω
t∗ =

t

ω

transforms to a general function of t in the mapped co-ordinate system,

f(t∗) ≡ f(t∗(t)) = f(t) (S1)

This gives us the transformations: k(t∗) ≡ k(t) and δ(t∗) ≡ δ(t). Substituting these in the column ‘backward
(partial)’ gives us the column ‘backward’. Together, columns ‘forward’ and ‘backward’ represent the bijective
mapping between the two co-ordinate systems.
Based on this obtained mapping, functions of various combinations of independent variables in original coor-
dinate system undergo functional transformations as,

f(t∗) ≡ f(t∗(t)) = f(t) (S2a)

f(r∗, t∗) ≡ f(r∗(r, t), t∗(t)) = f(r, t) (S2b)

f(r∗, z∗, t∗) ≡ f(r∗(r, t), z∗(z, t), t∗(t)) = f(r, z, t) (S2c)

f(r∗, z̄∗, t∗) ≡ f(r∗(r, t), z̄∗(z̄, t), t∗(t)) = f(r, z̄, t) (S2d)

Knowing this functional transformation, we will obtain expressions for the pertinent derivatives in the original
coordinate systems in terms of the derivatives in the mapped coordinate system. The general expression for
this transformation, using the chain rule, is,

∂U
∂X∗ ≡ ∂U

∂r

∂r

∂X∗ +
∂U
∂z

∂z

∂X∗ +
∂U
∂z̄

∂z̄

∂X∗ +
∂U
∂t

∂t

∂X∗ , (S3)

where U is a general dependent variable and X∗ is a general independent variables. The second order derivatives

are obtained recursively by plugging
∂U
∂X∗ in place of U in equation (S3).

As evident from equation (S3), in order to proceed further, we have to evaluate some derivatives of the
independent variables in the mapped co-ordinate system with respect to the independent variables in the
original co-ordinate system. These are,

∂t

∂t∗
=
∂(ωt∗)

∂t∗
= ω, (S4a)

∂r

∂t∗
=

∂

∂t∗

(
r∗

k(t∗)
1
2 ϵ

1
2R

)
= − r∗

2k
3
2 ϵ

1
2R

dk

dt∗
= − r

2k

dh

dt∗
≡ −ωr

2k

dk

dt
, (S4b)

∂z

∂t∗
≡ −ωz

k

dk

dt
,

∂z̄

∂t∗
≡ −ωz̄

δ

dδ

dt
, (S4c)

∂r

∂r∗
≡ 1

k
1
2 ϵ

1
2R

,
∂z

∂z∗
≡ 1

kϵR
,

∂z̄

∂z̄∗
≡ 1

δR
. (S4d)

All other combinations, that are not presented in equation (S4), are zero. Equation (S4a) is straightforward
to derive. In equation (S4b), the second last step involves substituting the expression for r∗ in terms of r

(from ‘backward’ column of table S1), and the last step (i.e. the ‘≡’ step) involves transforming
dk

dt∗
to

dk

dt

using equation (S3). Since k is a function of only t, the first three terms (i.e.
∂k

∂r
,
∂k

∂z
, and

∂k

∂z̄
) vanish, and

substituting
∂t

∂t∗
= ω from equation (S4a) gives

dk

dt∗
≡ ω

dk

dt
. Equations (S4c) and (S4d) are obtained using
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similar procedure as for equation (S4b).
Using equations (S3) and (S4), the transformation template for the derivatives is obtained as,

∂U
∂t∗

≡ ω

[
∂U
∂t

−
{(

r

2

∂U
∂r

+ z
∂U
∂z

)
1

k

dk

dt
+
z̄

δ

dδ

dt

∂U
∂z̄

}]
, (S5a)

∂U
∂r∗

≡ 1

k
1
2 ϵ

1
2R

∂U
∂r

,
∂2U
∂r∗2

≡ 1

kϵR2

∂2U
∂r2

, (S5b)

∂U
∂z∗

≡ 1

kϵR

∂U
∂z

,
∂2U
∂z∗2

≡ 1

k2ϵ2R2

∂2U
∂z2

, (S5c)

∂U
∂z̄∗

≡ 1

δR

∂U
∂z̄

,
∂2U
∂z̄∗2

≡ 1

δ2R2

∂2U
∂z̄2

, (S5d)

3. Transformation of Dependent Variables:

The scale for substrate displacement, u⃗∗ is taken as θR, giving us u⃗∗ = θRu⃗. The expressions for θ and θS
depend on the applied load, and are obtained in section 2.6. The scale for the net effective pressure, p∗, is
taken as Π, whose expression is dependent on the force interactions in the system, and is also obtained in
section 2.6. The scale for l∗ is the same as the scale for u⃗∗, giving us l∗ = θRl. H∗

I and H∗
S are scaled similar

to z∗, giving us H∗
I = ϵRHI and H

∗
S = ϵRHS. Lastly, we scale l∗S with θSR, such that l∗S = θSRlS.

Collating the expressions for the two cases of α ≪ 1 and α ∼ 1, we find that they can be collectively

represented as z∗ = kϵRz, r∗ = k
1
2 ϵ

1
2Rr, v∗r =

ϵ
1
2αωR

k
1
2

vr, v
∗
z = ϵαωRvz, p

∗
hd =

µωα

k2ϵ
phd, and H∗ = kϵRH,

with the expressions for k and H as presented in equations (2.24a) and (2.24b).

S2 Transformed Governing Equation and Boundary Conditions

All the governing equations and boundary conditions (in section 2.2) are transformed as per the transformation
detailed in sections 2.4 and S1. These equations are listed ahead.

� Continuity equation (from equation (2.4)):

1

r

∂(rvr)

∂r
+
∂vz
∂z

= 0 (S6)

� Momentum-conservation equation (or the Navier-Stokes equation, from equation (2.5)):

kϵ2ρωR2

µ

[
k
∂vr
∂t

− vr
2

dk

dt
− 1

2

dk

dt

(
r
∂vr
∂r

+ 2z
∂vr
∂z

)
+ α

(
vr
∂vr
∂r

+ vz
∂vr
∂z

)]
=

− ∂phd
∂r

+
∂2vr
∂z2

+ kϵ

[
1

r

∂

∂r

(
r
∂vr
∂r

)
− vr
r2

]
(S7a)

k2ϵ3ρωR2

µ

[
k
∂vz
∂t

− 1

2

dk

dt

(
r
∂vz
∂r

+ 2z
∂vz
∂z

)
+ α

(
vr
∂vz
∂r

+ vz
∂vz
∂z

)]
=

− ∂phd
∂z

+ kϵ
∂2vr
∂z2

+ k2ϵ2
[
1

r

∂

∂r

(
r
∂vz
∂r

)]
(S7b)

� No-slip and no-penetration conditions at the fluid-sphere interface, i.e. at z = H = HI + ΓSlS (from equation
(2.6)):

vr = 0 (S8a)

vz = VI + VS (S8b)

where,

VI =

 − sin(t) oscillatory
−1 approach
1 recession

(S9a)

VS =
ΓS

α

[
k
∂lS
∂t

+
klS
θS

dθS
dt

]
(S9b)
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� No slip and no penetration conditions at the fluid-substrate interface, i.e. at z = −Γl (from equation (2.8)):

vr = 0, (S10a)

vz = −Γ

α

[
k
∂l

∂t
+
kl

θ

dθ

dt
− r

2

dk

dt

∂l

∂r

]
= −VC (S10b)

� Zero velocity and zero hydrodynamic pressure conditions at far-end of the lubrication zone, i.e. as r → ∞
(from equation (2.9)):

vr → 0, vz → 0, phd → 0 (S11)

� Zero radial velocity and symmetric axial velocity and hydrodynamic pressure conditions at the centerline, i.e.
at r = 0 (from equation (2.10)):

vr =
∂vz
∂r

=
∂phd
∂r

= 0 (S12)

� Mechanical equilibrium equation (from equation (2.13)):

∂2ur
∂z̄2

+
δ

k
1
2 ϵ

1
2

(
1 +

λ

G

)
∂2uz̄
∂r∂z̄

+
δ2

kϵ

(
2 +

λ

G

)(
∂2ur
∂r2

+
1

r

∂ur
∂r

− ur
r2

)
= 0 (S13a)

(
2 +

λ

G

)
∂2uz̄
∂z̄2

+
δ

k
1
2 ϵ

1
2

(
1 +

λ

G

)(
∂2ur
∂r∂z̄

+
1

r

∂ur
∂z̄

)
+
δ2

kϵ

(
∂2uz̄
∂r2

+
1

r

∂uz̄
∂r

)
= 0 (S13b)

� Zero-displacement condition at far-end of the lubrication zone, i.e. as r → ∞ (from equation (2.14)):

ur → 0, uz̄ → 0 (S14)

� Zero-displacement condition at substrate-platform interface, i.e. at z̄∗ = L or z̄ =
β

δ
(from equation (2.15)):

ur = uz̄ = 0 (S15)

� Zero radial displacement and symmetric axial displacement at the centerline, i.e. at r = 0 (from equation
(2.16)):

ur =
∂uz̄
∂r

= 0 (S16)

� Traction balance condition at fluid-substrate interface, i.e. at z̄ = 0 (from equation (2.19)):

∂ur
∂z̄

+
δ

k
1
2 ϵ

1
2

∂uz̄
∂r

=
δΠ

θ(λ+ 2G)
·
{(

2 +
λ

G

)(
1

k2
µωα

ϵΠ

)(
k

1
2 ϵ

1
2

(
∂vr
∂z

+ kϵ
∂vz
∂r

))}
(S17a)

∂uz̄
∂z̄

+
δ

k
1
2 ϵ

1
2

(
λ

λ+ 2G

)(
∂ur
∂r

+
ur
r

)
= − δΠ

θ(λ+ 2G)
·
[
p−

{(
1

k2
µωα

ϵΠ

)(
2kϵ

∂vz
∂z

)}]
(S17b)

S3 Hankel-Space Deflection-Pressure Relation

We consider the Airy stress function, Φ, defined as,

ur = − δ

k
1
2 ϵ

1
2

(
1 +

λ

G

)
∂2Φ

∂r∂z̄
,

uz̄ =
∂2Φ

∂z̄2
+
δ2

kϵ

1

r

∂

∂r

(
r
∂Φ

∂r

)
.

(S18)
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Substituting these expressions in equation (S13), the first sub-equation gets trivially satisfied and the second one
converts into the non-dimensional biharmonic equation,

BΦ = 0, (S19)

where, B is the non-dimensional biharmonic operator,

B = L2 =

[
∂2

∂z̄2
+
δ2

ϵ

(
∂2

∂r2
+

1

r

∂

∂r

)]2
, (S20)

Following an analogous approach to that applied by Harding & Sneddon (1945) for the dimensional version of
equation (S20), we obtain the governing equation for the zero-eth order Hankel transform of Φ, Φ̃, as,(

∂2

∂z̄2
− χ2

)
Φ̃ = 0, (S21)

where χ is
δx

k
1
2 ϵ

1
2

, x is the Hankel-space counterpart of r, the n-th order Hankel transform of an arbitrary function

of r, V(r), is given as,

Hn[V(r)] =
∫ ∞

0

dr · rJn(xr) · V(r), (S22)

and the presence of an accent ˜ (e.g. in Ṽ(x)) denotes that the Hankel transform is zero-eth order, i.e. Ṽ(x) =
H0[V(r)].

Equation (S21) admits the solution of the form,

Φ̃ = (A+ By) exp(χz) + (C+ Dy) exp(−χz). (S23)

The constants of integration, A to D, are obtained from the boundary conditions. This equation, whose foundation
was laid by Harding & Sneddon (1945) and Muki (1960), has been used to solve multiple problems of axisymmetric
as well as general deformation field in setups ranging from coatings to semi-infinite media to stratified soft layers
to continuously graded solid domains (Dhaliwal & Rau, 1970; Chan et al., 1974; Giannakopoulos & Suresh, 1997;
Li & Chou, 1997; Selvadurai & Lan, 1998; Yang, 1998; Ai et al., 2002; Yang, 2003; Gacoin et al., 2006; Zhao &
Rajapakse, 2009; Selvadurai, 2009; Leroy & Charlaix, 2011; Wang et al., 2017). For the substrate-coating of arbitrary
thickness undergoing axisymmetric loading that we are studying, equations (S14) and (S16) get trivially satisfied,
and equations (S15) and (S17) provide the values of A to D .
Plugging in the expression for θ and retaining only the leading order terms, equation (S17) simplifies to,

∂ur
∂y

+
δ

k
1
2 ϵ

1
2

∂uy
∂r

= 0 (S24a)

∂uy
∂y

+
δ

k
1
2 ϵ

1
2

(
λ

λ+ 2G

)(
∂ur
∂r

+
ur
r

)
= −p (S24b)

These simplified equations are equivalent to the condition of σ(S)ry = 0, σ(S)yy = q at the substrate domain boundary
with distributed load q, that was applied by Harding & Sneddon (1945); Li & Chou (1997). Hence following algebra
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similar to theirs and employing equation (S24) and equation (S15), the expressions for A to D are obtained as,

A =
bϵ

3
2Π

k
3
2 δ2θ

p̃

2x3
exp (−γx) ·[ {

(λ+G)3(2γ2 + 1) + 2λ(λ+G)γx+G(λ+ 3G)
}
exp(γx) + λ(λ+ 3G) exp(−γx)

2(λ+G)3(2γ2 + 1) + 4G(λ+G)(λ+ 2G) + (λ+G)2(λ+ 3G) {exp(2γx) + exp(−2γx)}

]
,

B =− bϵ
3
2Π

k
3
2 δ2θ

p̃

2x3
exp (−γx) ·[

(λ+G)(2γx+ 1) exp(γx) + (λ+ 3G) exp(−γx)
2(λ+G)3(2γ2 + 1) + 4G(λ+G)(λ+ 2G) + (λ+G)2(λ+ 3G) {exp(2γx) + exp(−2γx)}

]
,

C =− bϵ
3
2Π

k
3
2 δ2θ

p̃

2x3
exp (−γx) ·[ {

(λ+G)3(2γ2 + 1)− 2λ(λ+G)γx+G(λ+ 3G)
}
exp(−γx) + λ(λ+ 3G) exp(γx)

2(λ+G)3(2γ2 + 1) + 4G(λ+G)(λ+ 2G) + (λ+G)2(λ+ 3G) {exp(2γx) + exp(−2γx)}

]
,

D =
bϵ

3
2Π

k
3
2 δ2θ

p̃

2x3
exp (−γx) ·[

(λ+G)(2γx− 1) exp(−γx)− (λ+ 3G) exp(γx)

2(λ+G)3(2γ2 + 1) + 4G(λ+G)(λ+ 2G) + (λ+G)2(λ+ 3G) {exp(2γx) + exp(−2γx)}

]
,

(S25)

where γ =
β

k
1
2 ϵ

1
2

and p̃ is the zero-eth order Hankel transform of pressure p.

The first-order Hankel transform of ur, H1[ur], and the zeroeth-order Hankel transform of uz̄, ũz̄, in terms of Φ̃ and
its derivatives with z̄ are,

H1[ur] = − δx

k
1
2 ϵ

1
2

∂Φ̃

∂z̄

ũz̄ =
∂2Φ̃

∂z̄2
−
(
2 +

λ

G

)
δ2x2

kϵ

∂Φ̃

∂z̄

(S26)

The expression for the zero-eth order Hankel transform of deflection l, l̃, is obtained by taking the expression for
ũz̄ at z̄ = 0, giving us equation (2.34). For the special case of incompressible substrate material, considering the
alternate expression for θ as presented in section 2.6 leads to equation (S24b) changing to,

∂uy
∂y

+
δ

k
1
2 ϵ

1
2

(
λ

λ+ 2G

)(
∂ur
∂r

+
ur
r

)
= −

(
λC + 2G

λ+ 2G

)
p, (S27)

with corresponding changes in the expressions for A to D, such that we obtain the expression for X as presented in
equation (2.36).

S4 Thickness and Compressibility Limits

The expression for X as given in equation (2.35) is a generic expression applicable for any substrate thickness and
Poisson’s ratio. However, its approximate expressions for various limiting cases provide us with some insights.
For the limiting case of thin substrate, δ ≪ k

1
2 ϵ

1
2 and therefore δ = β and γ ≪ 1. This implies,

exp(−4γx) ≈ 1− 4γx+8γ2x2 − 32

3
γ3x3 +O(γ4x4),

exp(−2γx) ≈ 1− 2γx+2γ2x2 − 4

3
γ3x3 +O(γ4x4).

(S28)

Substituting these approximations in equation (2.35) or (2.36) (as applicable) and keeping only the respectively
highest ordered terms in the numerator and the denominator, the approximate expression for X is,

X =


1 0 ≤ ν < 0.5

−γ
2

3

(
λC + 2G

G

)
x2, ν = 0.5

(S29)
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Substituting these expressions in equation (2.34) gives,

l̃ =


βp̃

δ
0 ≤ ν < 0.5

−β
δ

γ2

3

(
λC + 2G

G

)
x2p̃, ν = 0.5

(S30)

This equation can be straightaway inverted to give,

l =


βp

δ
0 ≤ ν < 0.5

−β
δ

γ2

3

(
λC + 2G

G

)
∂2p

∂r2
, ν = 0.5

=⇒ l∗ =


Lp∗

λ+ 2G
0 ≤ ν < 0.5

−L3

3G

∂2p∗

∂r∗2
, ν = 0.5

(S31)

The deflection-pressure relation in equation (S31) matches those obtained in other EHD and soft-lubrication studies
involving thin soft coatings, for the compressible case (Skotheim & Mahadevan, 2004) and in the incompressible
limit (Chandler & Vella, 2020).

On the other hand, for the limiting case of a semi-infinite substrate, δ = k
1
2 ϵ

1
2 and γ ≫ 1, implying,

γx≫ γ3x3 exp (−2γx) ≫ γx exp (−2γx) ≫ γx exp (−4γx) ≫ exp (−4γx) . (S32)

Substituting these approximations in equation (2.35) or (2.36) (as applicable) and keeping only the respectively
highest ordered terms in the numerator and the denominator, the approximate expression for X is,

X =


(λ+ 2G)2

2G(λ+G)γx
0 ≤ ν < 0.5

(λ+ 2G)(λC + 2G)

2G(λ+G)γx
=

(λC + 2G)

2Gγx
, ν = 0.5

(S33)

Substituting these expressions in equation (2.34) gives,

l̃ =


(λ+ 2G)2

2G(λ+G)

p̃

x
0 ≤ ν < 0.5

(λC + 2G)

2G

p̃

x
, ν = 0.5

(S34)

Evidently, equation (S34) cannot be inverted straightaway to get a real-space relation between pressure and deflec-
tion. The presence of x in the right hand side indicates that for a semi-infinite substrate, the deflection at each point
(on the r-axis) is theoretically dependent on the pressure distribution along the complete radial span. This depen-
dence exists for intermediate thicknesses a well, down until the substrate thickness reaches the thin-compressible
limit (the top expressions in equations (S30) and (S31)), when the deflection at a radial point becomes solely de-
pendent on the pressure at that radial point.
We next turn attention to substrate compressibility. The compressibility of any material is characterized by the
Poisson’s ratio. For most linear-elastic materials, Poisson’s ratio has a value between 0 and 0.5, with the Poisson’s
ratio of 0.5 for incompressible materials. Materials with Poisson’s ratio closer to 0.5 exhibit lower compressibility.
We consider two limits of material compressibility, a ‘perfectly incompressible limit (PIL)’ having ν = 0.5 and a
corresponding opposite limit that we refer to as ‘perfectly compressible limit (PCL)’, for which ν = 0. These limits

correspond to λ → ∞ and λ = 0 respectively, given that its expression is λ =
νEY

(1 + ν)(1− 2ν)
=

2νG

1− 2ν
. On the

other hand, G, whose expression in terms of EY and ν is
EY

2(1 + ν)
, varies merely from

EY

3
to

EY

2
as ν varies from

0 to 0.5. Therefore, PCL corresponds to
λ

G
= 0 and PIL corresponds to

G

λ
= 0. The expressions for X in PIL are

presented in equation (2.36), (S29) (bottom expression) and (S33) (bottom expression) for general thickness, thin
limit and semi-infinite limit respectively. The PCL can be obtained by simply putting λ = 0 in equations (2.35),
(S29) (top expression) and (S33) (top expression) for general thickness, and thin and semi-infinite limits respectively.
All the limiting expressions for X are summarized in table S2. The compressibility limit expressions for θ are also
presented in the last column for reference. Examining the expressions for X and θ for thin and semi-infinite cases
of PCL and PIL, we infer that while incompressibility can be seen to impart near-rigidity to a thin substrate (since

X = −γ
2

3

(
λC + 2G

G

)
x2 is O(γ2) smaller than 1), its effect on a semi-infinite substrate is much more ameliorated
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Table S2: Expressions for X and θ in thickness and compressibility limits

X

Thin Thick Semi-Infinite

(γ ≪ 1) (γ ∼ 1) (γ ≫ 1) θ

PCL (ν = 0) 1 equation (2.35)
2

x

∣∣∣∣
x ̸=0

, −1

4

∣∣∣∣
x=0

δΠ

2G

Normal 1 equation (2.35)
(λ+ 2G)2

2G(λ+G)x

∣∣∣∣
x ̸=0

, − λ2 + 3λG+ 2G2

2λ2 + 9λG+ 11G2

∣∣∣∣
x=0

δΠ

λ+ 2G

PIL (ν = 0.5) −γ2

3

(
λC + 2G

G

)
x2

equation (2.36) with

Λ = [Λi] = [1, 4, 2, 4, 8]

(λc + 2G)

2Gx

∣∣∣∣
x ̸=0

, −1

2

∣∣∣∣
x=0

δΠ

λc + 2G



as the dimensional deflection l∗ gets reduced to half for the same G or to three-fourth for the same EY. These
factors gets exactly recovered only when the pressure and deflection are one-way coupled for the complete range of
ν, which leads to the pressure being same for the two limiting cases being considered.

S5 Computational Scheme for TWC (Two-Way Coupling between pres-
sure and deflection)

For TWC, the solution is obtained by numerically solving the discretized versions of the equations as listed out at
the start of section 3. Note that we explicitly apply the boundary conditions,

dl

dr

∣∣∣∣
r=0

= 0, l|r→∞ → 0, (S35)

which has been obtained from equations (S16) and (S14). This is done as it generates smoother solution when
dealing with relatively crude grid.
The multi-variable Newton-Raphson scheme is employed to solve the discretized equations, where the Hankel trans-
formation kernel and the radial grid discretization are done in keeping with the discrete Hankel transformation
formalism presented by Baddour & Chouinard (2015).
For equation (2.34), we use the discrete Hankel transformation formalism presented by Baddour & Chouinard (2015).
Presented ahead is a concise version of their study that is pertinent to our problem. Their formalism utilizes the
Fourier-Bessel series form of functions, according to which, any function f(r) defined on a finite range r = 0 to
r = rmax can be expanded in terms of a Fourier-Bessel series as,

f(r) =

∞∑
k=1

fkJn

(
jn,kr

rmax

)
. (S36)

In equation (S36), J represents Bessel function, n is the order of the Bessel function which is arbitrary, jnk is the kth
root of the Bessel function of order n, and fk is the value of the function f(r) at the point r = rk on the discretized

grid, rn,k =
jn,krmax

jn,N
. Subsequent algebra yields the Hankel transformation kernel, Y as,

Yn,N
m,k =

2

jn,NJ 2
n+1(jn,k)

Jn

(
jn,mjn,m
jn,N

)
1 ≤ m, k ≤ N-1 (S37)

This transformation kernel is applicable for forward and inverse transformation between discretized functions f(r)

and its nth-order Hankel transform f̃n(x), defined on the discretized grids, rn,k =
jn,krmax

jn,N
and xn,m =

jn,m
rmax

respectively, each grid having N points. The forward transformation is defines as,

f̃n(xn,m) =
r2max

jn,N

N-1∑
k=1

Yn,N
m,kf(rn,k), (S38)

and the inverse transform is defines as,

f(xn,k) =
jn,N
r2max

N-1∑
m=1

Yn,N
k,mf̃n(rn,m). (S39)

Henceforth, we drop the superscripts n and N , with n being zero and N being implicitly considered.
Since the grid-sizes of discretized r and x are the same, N, we discretize equation (2.31) in real-space and equation
(2.34) in Hankel space. Therefore, the discretized versions of these equations are,

rk(Hk + Γlk)
3 d

2phd
dr2

∣∣∣∣
k

+[
(Hk + Γlk)

3 + 3rk(Hk + Γlk)
2

(
rk + Γ

dl

dr

∣∣∣∣
k

)]
dphd
dr

∣∣∣∣
k

= 12
rkθ

αϵ

[
dl

dt

∣∣∣∣
k

−
(
lk
θ

dθ

dt
+
rk
2k

dk

dt

∂l

∂r

∣∣∣∣
k

)]
+ 12rkVS,

(S40a)
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N−1∑
k=1

Ym,k (lk −Xmpk) = 0. (S40b)

The discretized equations (S40a) and (S40b) applies to the node points k=2 to k=N-1 and m=2 to m=N-1
respectively. At the centerline, i.e. k=1, the symmetric pressure and symmetric deflection boundary conditions
apply, i.e.

dphd
dr

∣∣∣∣
k

= 0, (S41a)

dl

dr

∣∣∣∣
k

= 0. (S41b)

At the far-end of the lubrication zone, i.e. k=N, the zero pressure and zero deflection boundary conditions apply,
i.e.

phd,k = 0, (S42a)

lk = 0. (S42b)

Equation (2.25) is simply approximated using trapezoidal rule for integration on the the discretized r-grid,

lS = 2π

N−1∑
k=1

(pk+1rk+1 + pkrk)(rk+1 − rk) (S43)

For each time instance, we solve equations (S40) to (S43) using the multivariable Newton-Raphson scheme (Press
et al., 1997). For this scheme, phd,k, k=1 to k=N constitute the first N unknowns and lk, k=1 to k=N constitute the
next N unknowns, and lS represents one unknown, totalling 2N+1 unknowns. Sub-equations a in equations (S40) to
(S42) constitute the first N required equations, and subequations b constitute the next N required equations. The
last equation is equation (S43), thus closing the system of equations.
The expressions for the residuals are,

Rk =
dphd
dr

∣∣∣∣
k

for k = 1

Rk = rk(Hk + Γlk + ΓSlS,k)
3 d

2phd
dr2

∣∣∣∣
k

+
dphd
dr

∣∣∣∣
k[

(Hk + Γlk + ΓSlS,k)
3+

3rk(Hk + Γlk + ΓSlS,k)
2

(
rk + Γ

dl

dr

∣∣∣∣
k

)]
− 12rkV for k = 2 to N− 1

Rk = phd,k for k = N

Rk =
dl

dr

∣∣∣∣
k

for k = 1

RN+k =

N−1∑
k=1

Ym,k (lk −Xmpk) for k = 2 to N− 1

RN+k = lk for k = N

R2N+1 =
lS
π

−
N−1∑
k=1

(pk+1rk+1 + piri)(rk+1 − rk)
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and the expressions for the Jacobians are,

Jk,k+κ = a
FD(r)
k,κ for k = 1, κ = 0 to 2

Jk,k+κ = rk(Hk + Γlk + ΓSlS,k)
3a

CD(rr)
k,κ + a

CD(r)
k,κ[

(Hk + Γlk + ΓSlS,k)
3+

3rk(Hk + Γlk + ΓSlS,k)
2

(
rk + Γ

dl

dr

∣∣∣∣
k

)]
for k = 2 to N− 1, κ = −1 to 1

Jk,N+k+κ = 3Γ

[{{
rk(Hk + Γlk + ΓSlS,k)

2 d
2phd
dr2

∣∣∣∣
k

+(
(Hk + Γlk + ΓSlS,k)

2+

2rk(Hk + Γlk + ΓSlS,k)

(
rk + Γ

dl

dr

∣∣∣∣
k

))
dphd
dr

∣∣∣∣
k

−

4rkka
BD(t)
it,0

α

}
− 4rkk

αθ

dθ

dt

}
a
CD(0)
k,κ +{

rk(Hk + Γlk + ΓSlS,k)
2 dphd

dr

∣∣∣∣
k

+
2r2k
α

dk

dt

}
a
CD(r)
k,κ

]
for k = 2 to N− 1, κ = −1 to 1

Jk,2N+1+κ = 3ΓS

[{
rk(Hk + Γlk + ΓSlS,k)

2 d
2phd
dr2

∣∣∣∣
k

+(
(Hk + Γlk + ΓSlS,k)

2+

2rk(Hk + Γlk + ΓSlS,k)

(
rk + Γ

dl

dr

∣∣∣∣
k

))
dphd
dr

∣∣∣∣
k

−

4rkka
BD(t)
it,0

α

}
− 4rkk

αθS

dθS
dt

]
for k = 2 to N− 1

Jk,k = 1 for k = N

JN+k,N+k+κ = a
FD(r)
k,κ for k = 1, κ = 0 to 2

JN+m,k = − Ym,kXm for m = 2 to N− 1

JN+m,N+k = Ym,k

(
1−Xm

Dpnhd
Dl

∣∣∣∣
k

)
for m = 2 to N− 1

JN+k,N+k = 1 for k = N

J2N+1,k = − πµωα

k2ϵΠ
·

 rk(rk+1 − rk)
rk(rk+1 − rk−1)
rk(rk − rk−1)

for
k = 1,
1 < k < N-1,
k = N,

J2N+1,k = − π
Dpnhd
Dl

·

 rk(rk+1 − rk)
rk(rk+1 − rk−1)
rk(rk − rk−1)

for
k = 1,
1 < k < N-1,
k = N,

J2N+1,2N+1 = 1

In the expressions for J, terms like a
CD(r)
k,κ stands for the co-efficients in the finite-difference approximations applied

to different derivatives. For example, the r-derivative of an arbitrary dependent variable Y is,

∂Y
∂r

∣∣∣∣
k

=

κ=2∑
κ=−2

a
CD(r)
k,κ Yk,k+κ. (S44)

The superscript ‘BD’,‘CD’ and ‘FD’ imply backward, central and forward differentiation. The term in bracket in the
superscript implies the ‘derivative with’, i.e. ‘r’ implies first derivative with r, ‘rr’ implies second derivative with r,

and 0 implies no derivative, i.e. a
CD(0)
k,κ is 1 for κ = 0 and 0 otherwise. Lastly, D denotes variational derivative, and

Dpnhd
Dl

denotes the variational derivative of total non-hydrodynamic pressure with l, i.e. the sum of the variational
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derivatives of each non-hydrodynamic pressure component with l,

DpDL

Dl
= −kΓϵKRpDL

DpvdW
Dl

= − 3ΓpvdW
(H + Γl)

Dp
Dl

=
2n0kBT

Π

DpDL

Dl
+

Asfw

6πk3ϵ3R3Π

DpvdW
Dl

(S45)

The solution for phd and l is obtained by iterating over the equations,

phd,k = phd,k −
(
J−1R

)
k
,

lk = lk −
(
J−1R

)
N+k

,

lS = lS −
(
J−1R

)
2N+1

,

(S46)

till ||R|| = max [|Rk|]k=1...2N reduces below a threshold, taken as 10−5 in our computations.

S6 Recovering Storage and Loss Moduli from Force Response

The oscillatory loading of the sphere, in the absence of a spring, is given as,

H∗
I = H∗ = 1 +

r∗2

2R
+ h0 cos(ωt

∗), (S47)

i.e. the transient part of the sphere’s oscillation is,

h∗ = h0 cos(ωt
∗). (S48)

For the case of small amplitude of oscillation, i.e. when h0 ≪ D =⇒ α ≪ 1, the time evolution of force between
the sphere and the substrate is appreciably close to sinusoidal, and can therefore be expressed as,

F ∗ = F0 cos(ωt
∗ + ϕ). (S49)

Note that ϕ is the lag of force F ∗ in comparison to the oscillatory loading h∗. This lag is π/2 for the case of
sufficiently low oscillation frequency, where deformation of the substrate and its temporal variation are both low
enough for the substrate to be practically rigid and thus force response to be purely viscous.

Equations (S48) and (S49) can be expressed in complex notation as,

h∗ = h0 exp(ιωt
∗), (S50)

F ∗ = F̄0 exp(ιωt
∗), (S51)

where F̄0 is complex and captures the lag ϕ. Based on F̄0, storage modulus G′ and loss modulus G′′ are defined as
(Leroy & Charlaix, 2011),

Ḡ = G′ + ιG′′ =
F̄0

h0
. (S52)

S7 Auxiliary Results and Discussions

In the interest of brevity in the main document, we present some additional results here. These results are arranged
as follows. In section S7.1, we present the deflection characteristics occurring in OWC (one way coupling) for the
limiting systems discussed in section S4. We restrict the solution to OWC (by taking high value of EY) in order
to recover the different ratios of deflection as expected for the limiting cases. In section S7.2, we demonstrate the
replication of pertinent results by Wang et al. (2017); Leroy & Charlaix (2011) computed using our framework. In
section S7.3, we present some supplementary results corresponding to section 4.1.1. In section S7.4, we present some
supplementary results corresponding to section 4.3.
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(a) (b)

Figure S1: Variation of (a) normalized pressure components p̂hd, p̂EDL and p̂vdW and normalized net effective

pressure p̂ (labelled ‘total’), and (b) normalized deflection l̂ at origin, with normalized time t̂ for oscillatory loading
for demonstration of limiting cases discussed in section S4 and presented in table S2; system parameter values are:
R = 1 mm, D = 50 nm, h0 = 45 nm, L = [0.5 mm (semi-infinite, labelled ‘∞’), 5 µm (thick, labelled ‘tk’), 50 nm
(thin, labelled ‘tn’)], ω = 2π rad/s, EY = 17.5 GPa, ν = [0.00 (PCL), 0.45 (normal), 0.50 (PIL)], µ = 1 mPa-s,
Asfw = 10−20 J, ψ0 = 2500 mV.

S7.1 Limiting Cases

Here we present solutions corresponding to the limiting cases discussed in section S4 (each of the limiting cases
presented table S2). We study oscillatory loading and choose a set of parameter values such that the pressure-
deflection FSI coupling remains OWC for the entire oscillation. Since the coupling is one-way, the net effective
pressure and individual pressure components exhibit time evolution (presented in figure S1a) which are identical for
all the cases. Resulting time evolution of deflection for the different limiting cases is presented in figure S1b. For
each limiting case, deflection plot obtained using the corresponding limiting expressions for X (as given in table S2)
and using the complete expression for X coincide. The trends agree with expectations we set in section S4.
The deflection for thin substrate in PIL (perfectly incompressible limit) is nearly zero. The ratio of deflection for thin

substrate, in PCL (perfectly compressible limit) to normal compressibility, is expected to be
Xthin,PCL · θPCL

Xthin,normal · θnormal
=

1 · δΠ · 1
2GPCL

1 · δΠ · 1
(λ+2G)normal

=
1

EY
· (1 + νPCL)

1
EY

· (1+νnormal)(1−2νnormal)
(1−νnormal)

=
(1 + 0.0)

(1+0.45)(1−2·0.45)
(1−0.45)

= 3.79, which matches the ratio
l̂max,PCL

l̂max,normal

=

5.26

1.38
= 3.79. The ratio of deflection for semi-infinite substrate, in PCL to normal compressibility to PIL, is

expected to be [xX]semi-infinite,PCL · θPCL : [xX]semi-infinite,normal · θnormal : [xX]semi-infinite,PIL · θPIL = 2 ·
[

1

2G

]
PCL

·

δΠ :

[
(λ+ 2G)2

2G(λ+G)
· 1

(λ+ 2G)

]
normal

· δΠ :

[
(λC + 2G)

2G
· 1

(λC + 2G)

]
PCL

· δΠ =

[
1

G

]
PCL

:

[
(λ+ 2G)

2G(λ+G)

]
normal

:[
1

2G

]
PCL

=
2(1 + νPCL)

EY
:
2(1− νnormal)(1 + νnormal)

EY
:
(1 + νPIL)

EY
= 2(1 + νPCL) : 2(1 − νnormal)(1 + νnormal) :

(1 + νPIL) = 2(1 + 0.0) : 2(1 − 0.45)(1 + 0.45) : (1 + 0.5) = 2 : 1.6 : 1.5, which matches with the ratio l̂max,PCL :

l̂max,normal : l̂max,PCL = 9.29 : 7.41 : 6.97 = 2 : 1.6 : 1.5. Lastly, we highlight that such a comparison of ratios has
been possible only because of OWC between deflection and pressure. In case of TWC (two way coupling), while the
expectation of deflection being higher as substrate thickness and/or substrate material compressibility increases is
qualitatively met, quantitative comparison is not possible. Hence, for the results discussed in the main document,
which delves primarily into TWC regime, we have refrained from making a quantitative assessment of these limiting
ratios.
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(a) (b)

Figure S2: Time evolution of (a) deflection for different substrate thicknesses, and (b) force for different spring
constants; all variables are alternatively-normalized, as per non-dimensionalization scheme used by Wang et al.
(2017); solid lines are computed solutions and square markers are values obtained by Wang et al. (2017).

Figure S3: Quasi-steady variation with time t∗ of Force F ∗ for high frequency low amplitude oscillations; system
parameter values are: R = 10 µm, D = 50 nm, h0 = 1 nm, L = 1 µm, ω̂ = 103, EY = 1.0 MPa, ν = 0.45, µ =
100 mPa-s; square markers are computed values and solid line is sinusoidal curve obtained as per storage and loss
modulus obtained by Leroy & Charlaix (2011).

S7.2 Replication of Results in Literature

As validation of our framework, we have computed some pertinent cases studied by Wang et al. (2017); Leroy &
Charlaix (2011).
In figure S2, time evolution of deflection and force for some of the cases studied by Wang et al. (2017) is presented.
The variables are ‘alternatively-normalized’, i.e. the computed dimensional solution is non-dimensionalized using
the scheme employed by Wang et al. (2017) rather than using the normalization scheme outlined in table 2. The solid
plot-lines are the computed results and the square markers are values obtained by Wang et al. (2017). Appreciable
agreement can be observed between the two.
In figure S3, the quasi steady time evolution of force between sphere and substrate for a case of high-frequency
low-amplitude oscillatory loading is presented. The input parameters match those for a case studied by Leroy &
Charlaix (2011), and a sinusoidal force response is expected based on the storage and loss modulus given by them
for this case. The computed solution is presented as the square markers and the expected sinusoidal force response
is presented as the solid line. Appreciable match between the two can be observed.

S14



S7.3 Supplementary Results for section 4.1.1

(a) (b)

Figure S4: Radial variation of normalized deflection l̂ at t = 2 for the thinnest incompressible substrate, i.e. L =
93.81 nm (β̂ = 0.02) and ν = 0.5, corresponding to figure 2, panel (a) is without DLVO forces, and panel (b) is with
DLVO force as per ψ0 = 100 mV and Asfw = 10−21 J; other parameter values are the same as for figure 2; same
legend applies to both panels.

Chandler & Vella (2020) present a combined foundation model for thin substrates, which accommodates both the
Winkler foundation relation for the thin compressible substrate as well as a derived Laplacian of pressure relation

(which gives l∗ =
L3

3G

d2p∗

dr∗2

)
that exists for the thin incompressible limit. Based on the scaling principles in their

study, the expression for θ for a thin incompressible substrate comes out as θ =
β3Π

3kϵG
. However, as specified in the

second last paragraph of section 2.6, any magnifying/diminishing effect of the work-around scaling

(
θ =

δΠ

λC + 2G

)
gets nullified due to a reciprocal scaling of X. For a thin incompressible substrate, this magnification/diminishing
effect is stronger, but it gets nullified nonetheless. Hence, we do not need to necessarily alter the expression for
θ (and X accordingly) even when we are dealing with a thin incompressible substrate. To verify that this indeed
is the case, we have obtained the radial deflection profile at the end of sphere range of motion for two situations
of approach loading for the thin incompressible substrate corresponding to figure 2, using the work-around scaling
for θ, the scaling of θ as per Chandler & Vella (2020) (and X modified accordingly) and the Laplacian of pressure
relation as given by Chandler & Vella (2020). These deflection profiles are depicted in figure S4. The deflection
profile with the two scaling approaches are observably identical. They deviate from the Laplacian of prsessure
relation to some extent, but exhibit appreciable similarity in trend. This deviation is probably a numerical artefact
occurring because of the smallness of the deflection. Furthermore, it is to be noted that l̂ is O(10−4) indicating
there is orders of magnitude smaller deflection of a thin substrate when its material is incompressible as opposed to
compressible.

S7.4 Supplementary Results for section 4.3

The explicit time derivative terms on the right hand side of equation (2.31) imparts a transience to the system
behaviour for high-frequency oscillations. This transience persists for larger number of oscillations for higher values
of ω̂ and α, and hence, we have computed sufficient number of oscillations for each of the solutions corresponding
to section 4.3. Here, we demonstrate one such solution in figure S5, where we show the time-evolution of force (top
panel), the pressure at the origin (middle panel) and the deflection at the origin (bottom panel) for the case of
ω̂ = 103 with α and D as 0.1 and 10 nm. We can see that both pressure and deflection take about 15 oscillations
to reach a quasi-steady state. In contrast, force F̂ reaches a quasi-steady state in only two oscillations. We have
observed that for the other cases also, the force reaches quasi-steady state faster than the pressure and the deflection.
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Figure S5: Variation of (top to bottom) force F̂ , pressure at origin p̂ and deflection at origin l̂ with time t for
oscillatory loading with D = 10 nm, α = 0.1, other parameter values are as in section 4.3.1.

(a) (b)

Figure S6: Quasi steady state variation of pressure components and net effective pressure at origin p̂all(O) with time
t for cases (ii) and (iv) discussed in section 4.3.1.

To demonstrate the contrast in the interplay of the underlying pressure components at different oscillation frequen-
cies, in figure S6, we present the quasi-steady time evolution of pressure components and the net effective pressure
for the cases of low frequency oscillations (ω̂ = 101) and high frequency oscillations (ω̂ = 103) with high oscillation
amplitude (α = 0.7) in the presence of van der Waals interactions, i.e cases (ii) and (iv) discussed in section 4.3.1.
Amongst the DLVO pressure components, only the EDL disjoining pressure is appreciable in magnitude. It is suf-
ficiently strong to dominate hydrodynamic pressure and therefore primarily dictates the net effective pressure and
thus the force when the oscillation frequency is small (see figure S6a). However, since the hydrodynamic pressure
grows in scale proportionately with the oscillation frequency, the net effective pressure is practically the same as the
hydrodynamic pressure when the oscillation frequency is large (see figure S6b).
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