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Weakly Non-Linear Shape Oscillations of
Inviscid Drops - Supplement

D. Zrnić and G. Brenn†
Institute of Fluid Mechanics and Heat Transfer, Graz University of Technology,

Inffeldgasse 25/F, 8010 Graz, Austria

The present supplementary material to our above paper details the determination of the
velocity and pressure fields, as well as surface deformation amplitudes, of oscillating
drops. The supplement is designed as a collection of equations for coefficients and
deformation amplitudes in the solutions for the various orders of approximation. We have
also put together equations arising in the application of the orthogonality of Legendre
polynomials for the determination of coefficients. Having removed these details from
the bulk of the paper text should improve its readability. The structures of the various
solutions are kept in the paper.

Appendix A
A.1. Orthogonality of the Legendre polynomials

Integrals of products of Legendre functions Pn
l (x) appear in the coefficient calculation

from the boundary conditions. The degree l may assume all natural numbers, and the
order n is either zero or unity. The integrals are evaluated accounting for the orthogonality
of the Legendre functions over the interval [−1, 1] of the independent variable x. Integrals
of products of two Legendre functions are

1∫
−1

Pn
l1(x)P

n
l2(x)dx =

2 (l1 + n)!

(2l1 + 1) (l1 − n)!
δl1l2 , (A.1)

where δl1l2 is the Kronecker delta.
Multiplication of the boundary conditions with a Legendre function and integration

produces integrals of products of three or four Legendre functions of different degrees.
For the special case of three Legendre polynomials (n = 0), integrals of the form

1∫
−1

Pl1(x)Pl2(x)Pl3(x)dx = 2

(
l1 l2 l3
0 0 0

)2

(A.2)

occur. The 3-j symbols on the right of this equation can be computed using the Racah
formula(

a b c
α β γ

)
= (−1)a−b−γ

√
∆(a, b, c)

√
(a+ α)!(a− α)!(b+ β)!(b− β)!(c+ γ)!(c− γ)!

×
∑
t

(−1)t

x
(A.3)
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where ∆(a, b, c) is a triangle coefficient defined by

∆(a, b, c) =
(a+ b− c)!(a− b+ c)!(−a+ b+ c)!

(a+ b+ c+ 1)!
, (A.4)

(Shore & Menzel (1968), p. 273), and

x = t!(c− b+ t+ α)!(c− a+ t− β)!(a+ b− c− t)!(a− t− α)!(b− t+ β)! (A.5)

with an integer t, and the sum in (A.3) is over all integers t for which the factorials in x
have non-negative arguments (Messiah (1962), p. 1058; Shore & Menzel (1968), p. 273).
In particular, the number of terms is equal to ν + 1, where ν is the smallest of the nine
numbers

a± α, b± β, c± γ,

a+ b− c, b+ c− a, c+ a− b

(Messiah (1962), p. 1058).
Upon multiplication with a Legendre function and integration, the right-hand sides of

the boundary conditions may exhibit overlap integrals of three or four Legendre functions
also. The general solutions by Dong & Lemus (2002) include all possible combinations of
degrees and orders which occur in this analysis. The overlap integral for three Legendre
functions is

1∫
−1

Pm1

l1
(x)Pm2

l2
(x)Pm3

l3
(x)dx =

√
(l1 +m1)! (l2 +m2)! (l3 +m3)!

(l1 −m1)! (l2 −m2)! (l3 −m3)!
(A.6)

×
∑
l12

∑
l123

G12G123 ×

√
(l123 −m123)!

(l123 +m123)!
I (l123,m123)

while for four Legendre functions it reads
1∫

−1

Pm1

l1
(x)Pm2

l2
(x)Pm3

l3
(x)Pm4

l4
(x)dx =

√
(l1 +m1)! (l2 +m2)! (l3 +m3)! (l4 +m4)!

(l1 −m1)! (l2 −m2)! (l3 −m3)! (l4 −m4)!

×
∑
l12

∑
l123

∑
l1234

G12G123G1234

√
(l1234 −m1234)!

(l1234 +m1234)!
I (l1234,m1234) (A.7)

The unknown coefficients G are defined as

G12 = (−1)
m12 (2l12 + 1)

(
l1 l2 l12
0 0 0

)(
l1 l2 l12
m1 m2 −m12

)
(A.8)

where the summation indexes |l1 − l2| 6 l12 6 l1 + l2 and l12 > m12, defining m12 =∑2
i=1 mi,

G123 = (−1)
m123 (2l123 + 1)

(
l12 l3 l123
0 0 0

)(
l12 l3 l123
m12 m3 −m123

)
(A.9)

where |l12 − l3| 6 l123 6 l12 + l3 and l123 > m123, defining m123 =
∑3

i=1 mi, and

G1234 = (−1)
m1234 (2l1234 + 1)

(
l123 l4 l1234
0 0 0

)(
l123 l4 l1234
m123 m4 −m1234

)
(A.10)

where |l123 − l4| 6 l1234 6 l123 + l4 and l1234 > m1234, defining m1234 =
∑4

i=1 mi. The
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coefficient I(l123,m123) is defined as

I(l123,m123) =

(
(−1)

m123 + (−1)
l123
)
2m123−2m123Γ ((l123)/2)Γ ((l123 +m123 + 1)/2)

((l123 −m123)/2)!Γ ((l123 + 3)/2)
(A.11)

where Γ is the gamma function. The same definition applies for I(l1234,m1234), switching
the l123 to l1234 and m123 to m1234. The integrals of the Legendre polynomials are
calculated using the 3-j symbols. They appear in the coefficients G12...i and in relation
(A.2). They are zero whenever the triangle inequality between the integers of the first row
is not satisfied. This property terminates the expansion of the coefficients in all boundary
conditions. Following the same example, the zero value occurs when m1 +m2 +m3 ̸= 0,
or when a = b = c = 0 and simultaneously l1 + l2 + l3 = 2λ + 1 appears, where
λ = 0, 1, 2, .... This property eliminates the odd-order Legendre polynomials from the
second-order approximation.

A.2. Second-order solutions
The coefficients C21l in the second-order solutions ”21” are calculated using the second-

order zero normal stress boundary condition (2.25). We substitute the pressure solution
p21 and the known η21 from (3.22) and (3.28), respectively, into the second-order zero
normal stress boundary condition. The first-order solutions are also substituted into
(2.25), setting r to 1. After applying the orthogonality of the Legendre polynomials, the
coefficients C21l for every l between zero and L, and for the time dependencies according
to exp

[
−2α

(p)
m τ

]
and exp

[
−2α

(n)
m τ

]
, read

C21l =
2l + 1

2

(m(m+ 1)− 1

2
− 3

8
α2
m,0

) 1∫
−1

Pm(x)
2
Pl(x)dx−

α2
m,0

8m2

1∫
−1

P 1
m(x)

2
Pl(x)dx


− H21l(l − 1)(l + 2) (A.12)

The integrals appearing in this equation are solved with the method presented in Dong &
Lemus (2002), as detailed in section A.1 above. From the equations for the second-order
coefficients follows that C

(p)
21l = C

(n)
21l . The coefficient C

(pn)
21l was set to zero for every l in

an earlier step of the derivation of the solutions already.
For the contributions ”22” to the second-order solutions, the coefficients C22k are

deduced from the homogeneous kinematic boundary condition for each time dependency
and each summation index k

C
(p)
22k =

η̂
(p)
22kα

(p)
2k

k(k + 1)
; C

(n)
22k =

η̂
(n)
22kα

(n)
2k

k(k + 1)
(A.13)

The two amplitudes η̂
(p)
22k and η̂

(n)
22k are determined from the second-order initial condi-

tions. For values k > 1 they read (with H21k taken from (3.28))

η̂
(p)
22k =

α
(n)
2k

(
H

(p)
21k +H

(n)
21k +H

(pn)
21k

)
−
(
2α

(p)
m H

(p)
21k + 2α

(n)
m H

(n)
21k + (α

(p)
m + α

(n)
m )H

(pn)
21k

)
α
(p)
2k − α

(n)
2k

=
α
(n)
2k

(
H

(p)
21k +H

(n)
21k +H

(pn)
21k

)
−
(
2α

(p)
m H

(p)
21k + 2α

(n)
m H

(n)
21k

)
α
(p)
2k − α

(n)
2k

(A.14)



4 D. Zrnić & G. Brenn

η̂
(n)
22k = −

α
(p)
2k

(
H

(p)
21k +H

(n)
21k +H

(pn)
21k

)
−
(
2α

(p)
m H

(p)
21k + 2α

(n)
m H

(n)
21k + (α

(p)
m + α

(n)
m )H

(pn)
21k

)
α
(p)
2k − α

(n)
2k

= −
α
(p)
2k

(
H

(p)
21k +H

(n)
21k +H

(pn)
21k

)
−
(
2α

(p)
m H

(p)
21k + 2α

(n)
m H

(n)
21k

)
α
(p)
2k − α

(n)
2k

(A.15)

while for k = 0 we have

η̂
(p)
220 = η̂

(n)
220 = −1

2

(
H

(p)
210 +H

(n)
210 +H

(pn)
210 +

1

2m+ 1

)
(A.16)

Knowing that η̂
(p)
22k = η̂

(n)
22k =: η̂22k, and that the frequencies α

(p)
2k and α

(n)
2k are complex

conjugate, allows the contributions ”22” to the second-order solutions to be formulated
in a simple form.

A.3. Coefficients for third-order solutions ”31”
In the simplified forms of the third-order solutions, the relations between the coeffi-

cients are
C

(p)
31h = C

(n)
31h =: C

(1)
31h C

(ppn)
31h = C

(pnn)
31h =: C

(2)
31h (A.17)

C
(pp)
31hk = C

(nn)
31hk =: C

(3)
31hk C

(pn)
31hk = C

(np)
31hk =: C

(4)
31hk (A.18)

H
(p)
31h = H

(n)
31h =: H

(1)
31h H

(ppn)
31h = H

(pnn)
31h =: H

(2)
31h (A.19)

H
(pp)
31hk = H

(nn)
31hk =: H

(3)
31hk H

(pn)
31hk = H

(np)
31hk =: H

(4)
31hk . (A.20)

A.4. Coefficients for the third-order solutions ”32”
The coefficients C32h in the contributions ”32” to the third-order solutions are deduced

from the homogeneous kinematic boundary condition for each time dependency and every
summation index k in the general solution as

C
(p)
32h =

η̂
(p)
32hα

(p)
3h

h(h+ 1)
C

(n)
32h =

η̂
(n)
32hα

(n)
3h

h(h+ 1)
(A.21)

The coefficients η̂
(p)
32h and η̂

(n)
32h in the solutions remain to be determined. Using the

third-order initial conditions, we can deduce the deformation amplitude of the drop
surface for each time dependency and summation index h. The initial conditions relate
the amplitudes of contribution ”31” to ”32”. The amplitudes read

η̂
(p)
32h =

1

α
(p)
3h − α

(n)
3h

[
α
(n)
3h

(
H

(p)
31h +H

(n)
31h (A.22)

+

K∑
k=0

(
H

(pp)
31hk +H

(nn)
31hk +H

(pn)
31hk +H

(np)
31hk

)
+H

(ppn)
31h +H

(pnn)
31h

)

−

(
3α(p)

m H
(p)
31h + 3α(n)

m H
(n)
31h + (2α(p)

m + α(n)
m )H

(pn)
31h + (α(p)

m + 2α(n)
m )H

(pnn)
31h

+

K∑
k=0

(α(p)
m + α

(p)
2k )H

(pp)
31hk +

K∑
k=0

(α(n)
m + α

(n)
2k )H

(nn)
31hk

+

K∑
k=0

(α(p)
m + α

(n)
2k )H

(pn)
31hk +

K∑
k=0

(α(n)
m + α

(p)
2k )H

(np)
31hk

)]
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Figure 1. Minimum deviation of the drop surface from the spherical shape as a function of
the deformation parameter η0 for the modes of initial deformation m = 2, 3 and 4.

η̂
(n)
32h =

1

α
(n)
3h − α

(p)
3h

[
α
(p)
3h

(
H

(p)
31h +H

(n)
31h (A.23)

+

K∑
k=0

(
H

(pp)
31hk +H

(nn)
31hk +H

(pn)
31hk +H

(np)
31hk

)
+H

(ppn)
31h +H

(pnn)
31h

)

+

(
3α(p)

m H
(p)
31h + 3α(n)

m H
(n)
31h + (2α(p)

m + α(n)
m )H

(pn)
31h + (α(p)

m + 2α(n)
m )H

(pnn)
31h

+

K∑
k=0

(α(p)
m + α

(p)
2k )H

(pp)
31hk +

K∑
k=0

(α(n)
m + α

(n)
2k )H

(nn)
31hk

+

K∑
k=0

(α(p)
m + α

(n)
2k )H

(pn)
31hk +

K∑
k=0

(α(n)
m + α

(p)
2k )H

(np)
31hk

)]

These equations show that η̂
(p)
32h = η̂

(n)
32h, which we denote η̂32h. Since the frequencies

α
(p)
3h and α

(n)
3h are complex conjugate, furthermore, this allows for a simple form of the

formulation of the contributions ”32” to the third-order solutions, where the simplified
notation for the amplitude is used.

A.5. Minimum relative drop surface area
The data in Fig. 1 show the minimum deviation of the drop surface area from the

spherical state as a function of the deformation parameter η0 for the modes of initial
deformation m = 2, 3 and 4. The lines are fit curves, showing the proportionality of the
surface area deviations to η40 .



6 D. Zrnić & G. Brenn

REFERENCES
Dong, S.-H. & Lemus, R. 2002 The overlap integral of three associated Legendre polynomials.

Appl. Math. Lett. 15, 541–546.
Messiah, A. 1962 Quantum mechanics, , vol. 2. Amsterdam, Netherlands: North-Holland.
Shore, B. W. & Menzel, D. H. 1968 Principles of atomic spectra, 1st edn. John Wiley &

Sons Inc.


