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Supplementary material for “On water waves
generated by a bottom obstacle translating at a
subcritical speed”

Peter H.-Y. Lo and Philip L.-F. Liu

This is the supplementary material for the paper entitled “On water waves generated by a bottom
obstacle translating at a subcritical speed”. This document shows the velocity solutions based
on the linear and fully dispersive wave model, outlines the derivation process for the analytical
solutions based on the linear and weakly dispersive wave model, provides descriptions on the
numerical models used, and presents the numerical results from relevant validation tests.

S.1. Velocity solutions for the linear and fully dispersive wave model
The velocity solutions based on the linear and fully dispersive wave model for waves generated

by a translating bottom obstacle can be calculated from (2.5) and (2.9) in the main paper as



u(r, θ, z, t) = uFr (r, θ, z, t) + u+(r, θ, z, t)

uFr = −
1

2π

∫ 2π

0

∫ ∞

0

qB̃0(q, ψ)
cosh(µq)

cosψ
[ 1

Fr cosψ
cosh(µqz) + µq · Fr cosψ sinh(µqz)

]
Fr2 cos2 ψ

D2 − Fr2 cos2 ψ
e−iq ·Fr cosψ ·teiqr cos(ψ−θ)dqdψ

u+ =
1

2π

∫ 2π

0

∫ ∞

0

qB̃0(q, ψ)
cosh(µq)

cosψ
[ 1

D
cosh(µqz) + µqD sinh(µqz)

]
( Fr cosψ
2(D − Fr cosψ)

e−iqDt +
Fr cosψ

2(D + Fr cosψ)
eiqDt

)
eiqr cos(ψ−θ)dqdψ

,

(S.1.1)

v(r, θ, z, t) = vFr (r, θ, z, t) + v+(r, θ, z, t)

vFr = −
1

2π

∫ 2π

0

∫ ∞

0

qB̃0(q, ψ)
cosh(µq)

sinψ
[ 1

Fr cosψ
cosh(µqz) + µq · Fr cosψ sinh(µqz)

]
Fr2 cos2 ψ

D2 − Fr2 cos2 ψ
e−iq ·Fr cosψ ·teiqr cos(ψ−θ)dqdψ

v+ =
1

2π

∫ 2π

0

∫ ∞

0

qB̃0(q, ψ)
cosh(µq)

sinψ
[ 1

D
cosh(µqz) + µqD sinh(µqz)

]
( Fr cosψ
2(D − Fr cosψ)

e−iqDt +
Fr cosψ

2(D + Fr cosψ)
eiqDt

)
eiqr cos(ψ−θ)dqdψ

,

(S.1.2)
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and

w(r, θ, z, t) = wFr (r, θ, z, t) + w+(r, θ, z, t)

wFr =
iµ
2π

∫ 2π

0

∫ ∞

0

qB̃0(q, ψ)
cosh(µq)

[ 1
Fr cosψ

sinh(µqz) + µq · Fr cosψ cosh(µqz)
]

Fr2 cos2 ψ

D2 − Fr2 cos2 ψ
e−iq ·Fr cosψ ·teiqr cos(ψ−θ)dqdψ

w+ = −
iµ
2π

∫ 2π

0

∫ ∞

0

qB̃0(q, ψ)
cosh(µq)

[ 1
D

sinh(µqz) + µqD cosh(µqz)
]

( Fr cosψ
2(D − Fr cosψ)

e−iqDt +
Fr cosψ

2(D + Fr cosψ)
eiqDt

)
eiqr cos(ψ−θ)dqdψ

, (S.1.3)

which are normalised by ε
√
gd. The expressions for the velocities are highly similar to those for

the free surface elevation, (2.18) in the main paper, but with the addition of the terms in the square
brackets and the cosψ or sinψ, if any, in front of the brackets. Again, uFr , vFr , and wFr are the
trapped wave solutions – they move with the bottom obstacle and do not change shape.
Similarly to the free surface solutions, for large r and 0 < Fr < 1, the far-field solutions for the

velocities can be derived:

ufar =
1
√

2π
r−

1
2

∫ ∞

0

B̃0(q, θ)
cosh(µq)

Fr cos θ
2(D − Fr cos θ)

q
1
2

cos θ
[ 1

D
cosh(µqz) + µqD sinh(µqz)

]
e
i

(
q(r−Dt)− π

4

)
dq

+
1
√

2π
r−

1
2

∫ ∞

0

B̃0(q, π + θ)
cosh(µq)

Fr cos θ
2(D − Fr cos θ)

q
1
2

cos θ
[ 1

D
cosh(µqz) + µqD sinh(µqz)

]
e
−i

(
q(r−Dt)− π

4

)
dq

, (S.1.4)

vfar =
1
√

2π
r−

1
2

∫ ∞

0

B̃0(q, θ)
cosh(µq)

Fr cos θ
2(D − Fr cos θ)

q
1
2

sin θ
[ 1

D
cosh(µqz) + µqD sinh(µqz)

]
e
i

(
q(r−Dt)− π

4

)
dq

+
1
√

2π
r−

1
2

∫ ∞

0

B̃0(q, π + θ)
cosh(µq)

Fr cos θ
2(D − Fr cos θ)

q
1
2

sin θ
[ 1

D
cosh(µqz) + µqD sinh(µqz)

]
e
−i

(
q(r−Dt)− π

4

)
dq

, (S.1.5)

and

wfar = −
iµ
√

2π
r−

1
2

∫ ∞

0

B̃0(q, θ)
cosh(µq)

Fr cos θ
2(D − Fr cos θ)

q
1
2[ 1

D
sinh(µqz) + µqD cosh(µqz)

]
e
i

(
q(r−Dt)− π

4

)
dq

−
iµ
√

2π
r−

1
2

∫ ∞

0

B̃0(q, π + θ)
cosh(µq)

Fr cos θ
2(D − Fr cos θ)

q
1
2[ 1

D
sinh(µqz) + µqD cosh(µqz)

]
e
−i

(
q(r−Dt)− π

4

)
dq

. (S.1.6)

The horizontal velocities in the x and y directions can be converted to velocities in the r and θ
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directions by
R(r, θ, z, t) = u(r, θ, z, t) cos θ + v(r, θ, z, t) sin θ
Θ(r, θ, z, t) = −u(r, θ, z, t) sin θ + v(r, θ, z, t) cos θ . (S.1.7)

From (S.1.4) and (S.1.5), the far-field velocity solutions in the r and θ directions then become

Rfar =
1
√

2π
r−

1
2

∫ ∞

0

B̃0(q, θ)
cosh(µq)

Fr cos θ
2(D − Fr cos θ)

q
1
2[ 1

D
cosh(µqz) + µqD sinh(µqz)

]
e
i

(
q(r−Dt)− π

4

)
dq

+
1
√

2π
r−

1
2

∫ ∞

0

B̃0(q, π + θ)
cosh(µq)

Fr cos θ
2(D − Fr cos θ)

q
1
2[ 1

D
cosh(µqz) + µqD sinh(µqz)

]
e
−i

(
q(r−Dt)− π

4

)
dq

, (S.1.8)

and
Θfar = 0. (S.1.9)

The results suggest that in the far field, the waves spread strictly radially, as the velocity in the θ
direction is zero.
The method used in Section 2.3 in the main paper to obtain the far-field leading wave solution

(valid for large r and near r = t) for the surface elevation can be repeated to obtain the velocity
solutions for the far-field leading wave. The derivation process is essentially identical – the terms
in the square brackets in (S.1.4), (S.1.5), and (S.1.6) simplify to either one or zero as q→ 0. The
only new terms in the velocity solutions are cos θ in (S.1.4) and sin θ in (S.1.5). The final results
are

ulead(r, θ, t) = ηlead(r, θ, t) cos θ, vlead(r, θ, t) = ηlead(r, θ, t) sin θ, wlead(r, θ, t) = 0, (S.1.10)

or
Rlead(r, θ, t) = ηlead(r, θ, t), Θlead(r, θ, t) = 0, wlead(r, θ, t) = 0, (S.1.11)

where the expression for ηlead has been given in (2.22) in the main paper.
Since the longest wave, corresponding to q = 0, travels the fastest to become the leading wave,

the far-field leading waves are long waves. Consistent with the characteristics of long waves, the
above velocity solutions for the far-field leading wave show no depth variation in the horizontal
velocities and no vertical velocity (wlead = 0).

S.2. Analytical solutions for the linear and weakly dispersive wave model
The derivation of the analytical solutions for LWD in constant water depth is essentially the

same as that for the linear and fully dispersive wave model presented in Section 2.1 in the main
paper. The dimensionless continuity equation reads

ηt + uα,x + vα,y + α11(uα,xxx + uα,xyy + vα,yyy + vα,xxy) = Bt + α12(Btxx + Btyy), (S.2.1)

and the momentum equations read

uα,t + α21(uα,xxt + vα,xyt ) + ηx = α22Bxtt, vα,t + α21(uα,xyt + vα,yyt ) + ηy = α22Bytt, (S.2.2)

where α11, α12, α21, and α22 are constants of order O(µ2):

α11 = µ
2(

1
2
α2 + α +

1
3
), α12 = µ

2(α +
1
2
), α21 = µ

2(
1
2
α2 + α), α22 = µ

2α, (S.2.3)
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where an optimal value α = −0.531 was suggested by Nwogu (1993). We recall that LWD has a
formal accuracy of O(µ2), and that the velocity solutions, uα(x, y, t) and vα(x, y, t), are solved for
at a characteristic depth z = zα = α. The velocity profiles can be recovered as

U(x, y, z, t) = uα − µ2(
1
2

z2 + z −
1
2
α2 − α)(uα,xx + vα,xy) + µ2(z − α)Bxt +O(µ4)

V(x, y, z, t) = vα − µ
2(

1
2

z2 + z −
1
2
α2 − α)(uα,xy + vα,yy) + µ2(z − α)Byt +O(µ4)

.

(S.2.4)
The initial conditions to be imposed are

η(x, y, t = 0) = 0, U(x, y, z = 0, t = 0) = 0, V(x, y, z = 0, t = 0) = 0, (S.2.5)

i.e., the free surface is initially quiescent, and the flow velocities on the free surface are zero
initially. The velocity conditions translate to

U(x, y, 0, 0) = uα(t = 0) + α21

(
uα,xx(t = 0) + vα,xy(t = 0)

)
− α22Bxt +O(µ4)

V(x, y, 0, 0) = vα(t = 0) + α21

(
uα,xy(t = 0) + vα,yy(t = 0)

)
− α22Byt +O(µ4)

. (S.2.6)

According to (S.2.4), {
uα(x, y, 0) = U(x, y, 0, 0) +O(µ2) = 0 +O(µ2)

vα(x, y, 0) = V(x, y, 0, 0) +O(µ2) = 0 +O(µ2)
, (S.2.7)

i.e., to the leading order, O(1), uα andU(x, y, 0, 0), as well as vα andV(x, y, 0, 0), are interchange-
able. Therefore, without affecting the formal accuracy of LWD, which is accurate to O(µ2), the
terms multiplied by α21 in (S.2.6) can be replaced with zero, since U(x, y, z = 0, t = 0) and
V(x, y, z = 0, t = 0) and their spatial derivatives are zero. The initial conditions to be imposed
then become

η(x, y, 0) = 0, uα(x, y, 0) = α22Bxt, vα(x, y, 0) = α22Byt . (S.2.8)
Applying the double Fourier transforms in space and the Laplace transform in time to (S.2.1)

and (S.2.2), and imposing the initial conditions (S.2.8), we write the transformed governing
equations as

sÝ̃η + ik(1 − α11q2)
Ý̃uα + il(1 − α11q2)

Ý̃
vα = (1 − α12q2)(s

Ý̃
B − B̃0)

Ý̃uα(s − sk2α21) = ikα22(s2 Ý̃B − sB̃0) − ikÝ̃η + sklα21
Ý̃
vα +O(µ4)

Ý̃
vα(s − sl2α21) = ilα22(s2 Ý̃B − sB̃0) − ilÝ̃η + sklα21

Ý̃uα +O(µ4)

, (S.2.9)

where q2 = k2 + l2 is again used to simplify the notations. The latter two equations can be
combined to express Ý̃uα and Ý̃vα in terms of Ý̃η:

Ý̃uα =
1
s

ik
1 − α21q2

(
α22(s2 Ý̃B − sB̃0) −

Ý̃
η
)
,
Ý̃
vα =

1
s

il
1 − α21q2

(
α22(s2 Ý̃B − sB̃0) −

Ý̃
η
)
. (S.2.10)

Substituting the above expressions back into the first equation in (S.2.9) allows Ý̃η to be solved for
as

Ý̃
η =

1
s2 + D2q2 (s

2 Ý̃B − sB̃0)(1 − α12q2 + α22D2q2), (S.2.11)

where

D(q) =

√
1 − α11q2

1 − α21q2 (S.2.12)
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is the normalised wave speed of LWD in 2DH.
For a bottom obstacle translating at a normalised constant speed Fr in the x direction, the

transformed free surface solution simplifies to

Ý̃
η =

s
s + ikFr

1
s2 + D2q2 (−ikFr B̃0)(1 − α12q2 + α22D2q2), (S.2.13)

for which an inverse Laplace transform is available. After simplification and converting to polar
coordinates, the solution for the free surface is

η(r, θ, t) = ηFr (r, θ, t) + η+(r, θ, t)

ηFr (r, θ, t) = −
1

2π

∫ 2π

0

∫ ∞

0
q(1 − α12q2 + α22D2q2)B̃0

Fr2 cos2 ψ

D2 − Fr2 cos2 ψ
e−iqFr cosψteiqr cos(ψ−θ)dqdψ

η+(r, θ, t) =
1

2π

∫ 2π

0

∫ ∞

0
q(1 − α12q2 + α22D2q2)B̃0( Fr cosψ

2(D − Fr cosψ)
e−iqDt −

Fr cosψ
2(D + Fr cosψ)

eiqDt
)
eiqr cos(ψ−θ)dqdψ

. (S.2.14)

The expressions in (S.2.14) are highly similar to the linear and fully dispersive solutions, (2.18)
in the main paper. The only differences are the definition of D and the replacement of 1/cosh(µq)
with 1−α12q2+α22D2q2, which are expansions (approximations) of the fully dispersive solutions,
as shown by Lo & Liu (2017) for the 1DH case.
The far-field and the far-field leading wave solutions can be sought from (S.2.14) using the

same approaches discussed in Section 2 in the main paper. The far-field solutions read

ηfar =
1
√

2π
r−

1
2

∫ ∞

0
(1 − α12q2 + α22D2q2)B̃0(q, θ)

Fr cos θ
2(D − Fr cos θ)

q
1
2 e

i

(
q(r−Dt)− π

4

)
dq

+
1
√

2π
r−

1
2

∫ ∞

0
(1 − α12q2 + α22D2q2)B̃0(q, π + θ)

Fr cos θ
2(D − Fr cos θ)

q
1
2 e
−i

(
q(r−Dt)− π

4

)
dq

.

(S.2.15)
On the other hand, the far-field leading wave solutions are exactly the same as (2.22) in the main
paper, since the far-field leading wave depends only on the leading-order frequency dispersion
effect, which is captured in LWD.

S.3. Numerical solvers
Long-wave models are derived under the assumptions of an inviscid, incompressible, irrota-

tional free surface flow where the characteristic length of the waves (which has been introduced
before as L) is large compared to the water depth (which has been introduced before as d), i.e.,
µ = d/L � 1. Within the context of long-wave theory, a moving bottom obstacle is interpreted
as a changing bathymetry – the still water depth (i.e., the bathymetry) is allowed to vary in
both space and time. The derivation of long-wave equations is well known, and can be found
in many studies; e.g., Wei et al. (1995), Madsen & Schäffer (1998) and Madsen et al. (2002).
Conventionally, the seafloor is regarded as stationary in time in modeling tsunamis. As a result,
temporal derivatives of the bathymetry are omitted in the derivation of long-wave equations
(e.g., the three above-mentioned studies). To study water waves generated by a deforming bottom
boundary, it is therefore important to ensure that all necessary temporal derivatives are kept,
as has been done in Lynett & Liu (2002), Fuhrman & Madsen (2009), Mitsotakis (2009), and
Zhou & Teng (2010). Here we present the dimensionless mass and momentum equations in 2DH
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adopted from Lynett & Liu (2002):

1
ε

Ht + ∇ ·
[
H(®uα + µ2 ®u1)

]
= O(µ4), (S.3.1)

and

®uα,t + ε(®uα · ∇)®uα + ∇η + µ2

{
zα∇G1 +

1
2

z2
α∇G2

}
t

+ε µ2

{
G1∇G1 − ∇(ηG1,t ) +

[
®uα · (∇zα)

]
(∇G1 + zα∇G2) + zα∇(®uα · ∇G1) +

1
2

z2
α∇(®uα · ∇G2)

}
+ε2µ2∇

{
ηG1G2 − η®uα · ∇G1 −

1
2
η2G2,t

}
+ ε3µ2∇

{
1
2
η2(G2

2 − ®uα · ∇G2)

}
= O(µ4)

,

(S.3.2)
where

G1 = ∇ · (h®uα) +
1
ε

ht, G2 = ∇ · ®uα , (S.3.3)

and

®u1 =

{
zα +

1
2
(h − εη)

}
∇G1 +

{
1
2

z2
α −

1
6

[
(εη)2 − εηh + h2

]}
∇G2. (S.3.4)

We refer to (S.3.1) and (S.3.2) as FNWD (fully nonlinear and weakly dispersive wave model),
which is accurate up to O(µ2), has a truncation error of O(µ4), and invokes no assumption on the
wave nonlinearity ε .
In (S.3.1)–(S.3.4), consistent with the normalisation used in themain paper, the spatial variables
(x, y) are normalised by L, the time variable t is normalised by L/

√
gd, and the free surface

elevation η is normalised by A. The newly introduced variables are: the bathymetry (still water
depth) h, which is normalised by d, and the total water depth H, which can be written as
H = h + εη. In the bottom-obstacle-generated wave problem, the characteristic wave height is
assumed to be the same as the characteristic bottom obstacle thickness A, and the characteristic
wavelength is assumed to be the same as the characteristic bottom obstacle length L. In addition,
it is convenient to isolate the bottom obstacle from the bathymetry, by writing

h(x, y, t) = h0(x, y) − εB(x, y, t), (S.3.5)

where h0(x, y) is the still water depth that does not change in time, and B(x, y, t) is the bottom
obstacle function. Within long-wave theory, B(x, y, t) has to satisfy the scaling assumption in
(S.3.1) and (S.3.2). Namely, B and its derivatives, normalised by L in length, A in height, and
L/

√
gd in time, are required to remain of order one. Therefore, an obstacle of a locally fast-

varying shape (which results in locally large derivatives of B), such as a semi-ellipse, for which
case the slope approaches infinity near the two ends, violates the scaling assumption and cannot
be accurately resolved by long-wave models.
The leading-order flow velocity ®uα = (uα, vα), normalised by ε

√
gd, is defined at a representa-

tive depth zα, which can be chosen to improve frequency dispersion and maximise the accuracy of
the long-wave equations (Nwogu 1993). For the best overall performance, Kennedy et al. (2001)
and Shi et al. (2012) recommended the form

zα = αh + ε(1 + α)η, α = −0.531. (S.3.6)

The full velocity distribution can be recovered as

®U(x, y, z, t) = ®uα − µ2
{

1
2
(z2 − z2

α)∇(∇ · ®uα) + (z − zα)∇
[
∇ · (h®uα +

ht
ε
)

]}
, (S.3.7)
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where the terms multiplied by µ2 are the higher-order velocity correction. After depth-averaging,
the higher-order velocity correction becomes ®u1 = (u1, v1), (S.3.4), which is normalised by ε

√
gd

and of O(1). However, it shows up in the equations as µ2 ®u1.
In this study, FNWD is the most accurate, and therefore the most computationally expensive,

long-wave model. Bymaking further assumptions on µ2 and ε , simpler and therefore less accurate
and less expensive long-wave models can be obtained: neglecting the ε µ2, ε2µ2, and ε3µ2

terms in (S.3.1) and (S.3.2) results in WNWD (weakly nonlinear and weakly dispersive wave
model; commonly known as the extended Boussinesq equations), which has a truncation error
of O(µ4, ε µ2); neglecting all terms involving µ2 results in NSWE (nonlinear shallow water wave
equations), which has a truncation error of O(µ2); neglecting all terms involving ε results in LWD
(linear and weakly dispersive wave model), which has a truncation error of O(µ4, ε); neglecting
all terms involving ε or µ2 results in LSWE (linear shallow water wave equations), which has
a truncation error of O(µ2, ε). A scaling analysis can be performed to verify that the linear
models are independent of the nonlinearity parameter ε (i.e., how thick the obstacle is), and the
nondispersive models are independent of the frequency dispersion parameter µ (i.e., how shallow
the water is).
Typically, to model a long-wave problem, one employs just one set of long-wave equations and

develop a numerical solver for it. However, in this study, we utilise the different sets of long-wave
equations to study the effects due to nonlinearity alone (i.e., the ε terms), frequency dispersion
alone (i.e., the µ2 terms), and nonlinear frequency dispersion (i.e., all terms altogether). For the
same wave problem, comparing the results predicted by the different long-wave models enables
the isolation of each of these effects. For example, comparing the LSWE results with the NSWE
results reveals the effects due to nonlinearity alone; comparing the LSWE results with the LWD
results reveals the effects due to frequency dispersion alone; comparing the NSWE results or the
LWD results with the WNWD results or the FNWD results reveals the effects due to nonlinear
frequency dispersion. In order to achieve this, a suite of comparable numerical solvers must
be developed, so that these long-wave equations are arranged in similar forms and solved with
comparable numerical accuracy. A similar analysis was performed by Lynett & Liu (2002) for
landslide-generated waves in 1DH; in this study, we perform such an analysis in 2DH, with a
focus on examining the deviations from the linear analytical solutions.

S.3.1. Numerical methods

In this study, two types of numerical solvers are developed: one for the linear long-wave
equations, LSWEandLWD, and the other for the nonlinear long-wave equations,NSWE,WNWD,
andFNWD.The linear equation solver adopts a finite-difference framework, using the fourth-order
central difference method to discretise in space, and the third-order SSP-RK (Gottlieb et al. 2001)
to march in time. The nonlinear equation solver adopts a hybrid finite-difference/finite-volume
shock-capturing scheme, using either the second-order MUSCL (Toro 2001) or the fifth-order
WENO (Jiang & Shu 1996) to discretise in space, and the third-order SSP-RK (Gottlieb et al.
2001) to march in time. The dimensional equations are solved. No model tuning, such as the
bottom friction and wave breaking dissipation terms, is introduced.
The numerical solution of long-wave equations is considered a mature research subject, on

which many studies exist: for example, Toro (2001), Li & Raichlen (2002), Lynett & Liu (2002),
Wei et al. (2006), Shiach & Mingham (2009), Shi et al. (2012), Dutykh & Kalisch (2013), Zhou
et al. (2016), and Hatland & Kalisch (2019). Therefore, we only briefly outline the governing
equations and the numerical methods of our numerical solvers in Section S.3.1.1 for the linear
long-wave numerical models, and in Section S.3.1.2 for the nonlinear long-wave numerical
models.
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S.3.1.1. Linear long-wave numerical models
In the linear long-wave models, the nonlinear terms in (S.3.1) and (S.3.2), i.e., terms multiplied

with ε , are omitted. Using primes to denote dimensional quantities, we rearrange the dimensional
mass and momentum equations for the linear long-wave models to be{

η′t′ +
[
h′0(u

′
α + u′1)

]
x′
+

[
h′0(v

′
α + v

′
1)

]
y′
= B′t′,

(u′α + u′2)t′ = −gη
′
x′, (v

′
α + v

′
2)t′ = −gη

′
y′,

. (S.3.8)

For LSWE, u′1 = u′2 = v′1 = v′2 = 0. For LWD,
u′1 = (z

′
α +

1
2

h′0)G
′
1,x′ + (

1
2

z′2α −
1
6

h′20 )G
′
2,x′, u′2 = z′αG′1,x′ +

1
2

z′2α G′2,x′

v′1 = (z
′
α +

1
2

h′0)G
′
1,y′ + (

1
2

z′2α −
1
6

h′20 )G
′
2,y′, v′2 = z′αG′1,y′ +

1
2

z′2α G′2,y′
z′α = αh′0, α = −0.531
G′1 = (h

′
0u′α)x′ + (h

′
0v
′
α)y′ + h′t′, G′2 = u′α,x′ + v

′
α,y′

. (S.3.9)

We recall that h′0(x
′, y′) is the bathymetry that excludes the bottom obstacle, and h′(x ′, y′, t ′) =

h′0(x
′, y′)− B′(x ′, y′, t ′) is the bathymetry that includes it. While u′1 and v

′
1 are the depth-averaged

higher-order velocity corrections, u′2 and v′2 do not have physical meanings.
A finite-difference scheme, the same as that used in Lo & Liu (2017) for solving LSWE, is

employed. The fourth-order central difference scheme is used for the spatial discretisation, and
the third-order Strong Stability Preserving Runge-Kutta (SSP-RK; see Gottlieb et al. 2001) is
used for the time marching.
At each iteration in time based on the SSP-RK scheme, η′, P′ = (u′α + u′2), and Q′ = (v′α + v

′
2)

are updated via equations (S.3.8). While u′α = P′ and v′α = Q′ can be recovered directly in LSWE
since u′2 = v′2 = 0, a matrix system needs to be solved for each velocity component in LWD, since
u′2 and v

′
2 depend on u′α and v′α. This process is briefly explained here for u′α: writing u′2 in (S.3.9)

out fully gives

u′2 = z′α(h
′
0u′α)x′x′ + z′α(h

′
0v
′
α)y′x′ + z′αh′t′x′ +

1
2

z′2α u′α,x′x′ +
1
2

z′2α v
′
α,y′x′ . (S.3.10)

Separating the terms with u′α from those with v′α results in

N ′1 = z′α(h
′
0u′α)x′x′ +

1
2

z′2α u′α,x′x′, N ′2 = z′α(h
′
0v
′
α)y′x′ +

1
2

z′2α v
′
α,y′x′ + z′αh′t′x′ . (S.3.11)

Using ∆x ′ to denote the grid spacing in x ′ and i to denote the index for x ′ in the numerical model,
we employ the second-order central difference formula to discretise N ′1 as

N ′1,i = z′α,i
(h′0u′α)i+1 − 2(h′0u′α)i + (h

′
0u′α)i−1

∆x ′2
+

1
2

z′2α,i
u′α,i+1 − 2u′α,i + u′α,i−1

∆x ′2
. (S.3.12)

On the other hand, N ′2 is independent of u′α. The fourth-order central difference scheme and v′α
from the previous sub-time step are used to compute N ′2. P′ = u′α + u′2 = u′α + N ′1 + N ′2 can be
rearranged to be u′α + N ′1 = P′ − N ′2, for which a matrix system with discretised N ′1 can be set up
to solve for u′α. A similar matrix is set up and solved for v′α.

S.3.1.2. Nonlinear long-wave numerical models
The nonlinear long-wave equations – NSWE, WNWD, and FNWD – are solved by using a

hybrid finite-volume/finite-difference shock-capturing numerical scheme. The spatial accuracy
can be either second-order (MUSCL with a van Leer slope limiter; see Toro 2001) for quicker
computation, or fifth-order accurate (WENO; see Jiang& Shu 1996), and the temporal accuracy is
third-order (SSP-RK; see Gottlieb et al. 2001). The local Riemann problem is solved by an HLLC
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approximate Riemann solver (Toro 2001), which is applicable to both wet-wet cell interfaces
and wet-dry cell interfaces. An advantage of employing a Riemann solver is that the shoreline,
a wet-dry cell interface, is automatically captured without additional numerical treatment. In
recent years, shock-capturing numerical schemes have become a robust and standard means
for solving long-wave equations; see e.g., Li & Raichlen (2002), Wei et al. (2006), Shiach &
Mingham (2009), Shi et al. (2012), and Zhou et al. (2016). The main distinguishing features of
our numerical model are the formal allowance, i.e., the bathymetry is allowed to vary in time in
the derivation of the governing equations, of a bathymetry that changes appreciably in time, and
the easiness in switching between solving the different long-wave models.

After substantial rearrangement of (S.3.1) and (S.3.2) into a form suitable for the numerical
solver, the dimensional mass equation in 2DH reads:

H ′t′ +
[
H ′(u′α + u′1)

]
x′
+

[
H ′(v′α + v

′
1)

]
y′
= 0, (S.3.13)

and the dimensional momentum equations in 2DH read:



[
H ′(u′α + u′2)

]
t′
+

[
H ′(u′α + u′1)

′2 +
1
2
g(η′2 + 2η′h′)

]
x′
+

[
H ′(u′α + u′1)(v

′
α + v

′
1)

]
y′

= gη′h′x′ + S′X[
H ′(v′α + v

′
2)

]
t′
+

[
H ′(u′α + u′1)(v

′
α + v

′
1)

]
x′
+

[
H ′(v′α + v

′
1)
′2 +

1
2
g(η′2 + 2η′h′)

]
y′

= gη′h′y′ + S′Y

.

(S.3.14)
For NSWE, u′1 = u′2 = v′1 = v′2 = S′X = S′Y = 0. For WNWD,



u′1 = (z
′
α +

1
2

h′)G′1,x′ + (
1
2

z′2α −
1
6

h′2)G′2,x′, u′2 = z′αG′1,x′ +
1
2

z′2α G′2,x′

v′1 = (z
′
α +

1
2

h′)G′1,y′ + (
1
2

z′2α −
1
6

h′2)G′2,y′, v′2 = z′αG′1,y′ +
1
2

z′2α G′2,y′
S′X = H ′t′(u

′
2 − u′1), S′Y = H ′t′(v

′
2 − v

′
1)

z′α = αh′, α = −0.531
G′1 = (h

′u′α)x′ + (h
′v′α)y′ + h′t′, G′2 = u′α,x′ + v

′
α,y′ .

. (S.3.15)
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For FNWD,

u′1 = (z
′
α +

1
2

h′ −
1
2
η′)G′1,x′ + (

1
2

z′2α −
1
6

h′2 −
1
6
η′2 +

1
6
η′h′)G′2,x′

u′2 = z′αG′1,x′ +
1
2

z′2α G′2,x′ − (η
′G′1 +

1
2
η′2G′2)x′

v′1 = (z
′
α +

1
2

h′ −
1
2
η′)G′1,y′ + (

1
2

z′2α −
1
6

h′2 −
1
6
η′2 +

1
6
η′h′)G′2,y′

v′2 = z′αG′1,y′ +
1
2

z′2α G′2,y′ − (η
′G′1 +

1
2
η′2G′2)y′

S′X = H ′t′(u
′
2 − u′1) + H ′

{
(u′1u′α,x′ + v

′
1u′α,y′ + u′αu′1,x′ + v

′
αu′1,y′) −

[
η′t′(G

′
1 + η

′G′2)
]
x′

−

[
G′1G′1,x′ + (u

′
αz′α,x′ + v

′
αz′α,y′)(G

′
1,x′ + z′αG′2,x′) + z′α(u

′
αG′1,x′ + v

′
αG′1,y′)x′

+
1
2

z′2α (u
′
αG′2,x′ + v

′
αG′2,y′)x′

]
−

[
η′(G′1G′2 − u′αG′1,x′ − v

′
αG′1,y′)

]
x′
−

1
2

[
η′2(G′22 − u′αG′2,x′ − v

′
αG′2,y′)

]
x′

}
S′Y = H ′t′(v

′
2 − v

′
1) + H ′

{
(u′1v

′
α,x′ + v

′
1v
′
α,y′ + u′αv

′
1,x′ + v

′
αv
′
1,y′) −

[
η′t′(G

′
1 + η

′G′2)
]
y′

−

[
G′1G′1,y′ + (u

′
αz′α,x′ + v

′
αz′α,y′)(G

′
1,y′ + z′αG′2,y′) + z′α(u

′
αG′1,x′ + v

′
αG′1,y′)y′

+
1
2

z′2α (u
′
αG′2,x′ + v

′
αG′2,y′)y′

]
−

[
η(G′1G′2 − u′αG′1,x′ − v

′
αG′1,y′)

]
y′
−

1
2

[
η′2(G′22 − u′αG′2,x′ − v

′
αG′2,y′)

]
y′

}
z′α = αh′ + (1 + α)η′, α = −0.531
G′1 = (h

′u′α)x′ + (h
′v′α)y′ + h′t′, G′2 = u′α,x′ + v

′
α,y′

.

(S.3.16)
Similarly to the linear long-wave models, while u′1 and v′1 are the depth-averaged higher-order
velocity corrections, u′2 and v′2 do not have physical meanings. We recall that H ′(x ′, y′, t ′) =
η′(x ′, y′, t ′)+h′(x ′, y′, t ′) is the total water depth, and the bathymetry h′(x ′, y′, t ′) can be expressed
as h′(x ′, y′, t ′) = h′0(x

′, y′)−B′(x ′, y′, t ′) to separate the still water bathymetry h′0 from the bottom
obstacle B′.
At each iteration in time based on the SSP-RK scheme, H ′ in (S.3.13) and P′ = H ′(u′α + u′2)

and Q′ = H ′(v′α + v
′
2) in (S.3.14) are updated using Godunov’s scheme (see e.g., Toro 2001). The

spatial derivatives in the expressions for u′1, u′2, v
′
1, v
′
2, S′X , S′Y , and the terms gη′h′x′ and gη′h′y′

on the right hand sides of (S.3.14), are calculated by the fourth-order central difference formula.
The temporal derivatives (i.e., η′t′ , and B′t′ if an analytical expression for the obstacle function is
not available) in the expressions for G′1, S′X , and S′Y , are calculated with a two-point difference
formula using the values stored at each sub-time step in the SSP-RK time-updating scheme. More
detailed discussions can be found in Shi et al. (2012).
While u′α and v′α can be directly recovered in NSWE, a matrix system needs to be solved for

each velocity component in FNWD and WNWD, since u′2 and v′2 are functions of u′α and v′α.
Here we briefly explain the process for u′α: writing u′2 in (S.3.16) out fully yields

u′2 = z′α(h
′u′α)x′x′ + z′α(h

′v′α)y′x′ + z′αh′t′x′ +
1
2

z′2α u′α,x′x′ +
1
2

z′2α v
′
α,y′x′

−CFNWD

[
η′x′(h

′u′α)x′ + η
′
x′(h

′v′α)y′ + η
′
x′h
′
t′ + η

′(h′u′α)x′x′ + η
′(h′v′α)y′x′

+η′h′t′x′ + η
′η′x′u

′
α,x′ + η

′η′x′v
′
α,y′ +

1
2
η′2u′α,x′x′ +

1
2
η′2v′α,y′x′

] , (S.3.17)
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where CFNWD = 1 for FNWD and CFNWD = 0 for WNWD. Separating the terms with u′α from
those with v′α gives

N ′1 = z′α(h
′u′α)x′x′ +

1
2

z′2α u′α,x′x′

−CFNWD

[
η′x′(h

′u′α)x′ + η
′(h′u′α)x′x′ + η

′η′x′u
′
α,x′ +

1
2
η′2u′α,x′x′

]
N ′2 = z′α(h

′v′α)y′x′ +
1
2

z′2α v
′
α,y′x′ + z′αh′t′x′

−CFNWD

[
η′x′(h

′v′α)y′ + η
′(h′v′α)y′x′ + η

′η′x′v
′
α,y′ +

1
2
η′2v′α,y′x′ + η

′
x′h
′
t′ + η

′h′t′x′
] . (S.3.18)

With ∆x ′ denoting the grid spacing in x ′ and i denoting the index for x ′ in the numerical model,
the second-order central difference formula can be employed to discretise N ′1 as

N ′1,i = z′α,i
(h′u′α)i+1 − 2(h′u′α)i + (h′u′α)i−1

∆x ′2
+

1
2

z′2α,i
u′α,i+1 − 2u′α,i + u′α,i−1

∆x ′2

−CFNWD

[
η′x′
(h′u′α)i+1 − (h′u′α)i−1

2∆x ′
+ η′
(h′u′α)i+1 − 2(h′u′α)i + (h′u′α)i−1

∆x ′2

+η′η′x′
u′α,i+1 − u′α,i−1

2∆x ′
+

1
2
η′2

u′α,i+1 − 2u′α,i + u′α,i−1

∆x ′2

] . (S.3.19)

On the other hand, N ′2 is independent of u′α. The fourth-order central difference scheme and v′α
from the previous sub-time step are used to compute N ′2. P′ = H ′(u′α + u′2) = H ′(u′α + N ′1 + N ′2)
can be rearranged to be u′α + N ′1 = P′/H ′ − N ′2, for which a matrix system with discretised N ′1
can be set up to solve for u′α. A similar procedure is repeated to solve for v′α.

S.3.2. Validation
Long-wave models are known to be accurate when the scaling assumptions are met, and shock-

capturing numerical schemes have been found to be an effective way of solving them (see e.g.,
Li & Raichlen 2002; Wei et al. 2006; Shiach & Mingham 2009; Shi et al. 2012; Kazolea et al.
2012; Zhou et al. 2016). Several benchmark tests have been performed using our numerical
model (Lo 2018). These tests include: 1DH regular waves traveling over a submerged dike (Beji
& Battjes 1993; Dingemans 1994), 1DH solitary wave runup on a slope (Synolakis 1987), 2DH
solitary wave runup on a conical island (Liu et al. 1995), 1DH bottom-obstacle-generated waves
in constant depth (Whittaker et al. 2015, 2017), and 1DH bottom-obstacle-generated waves on a
slope (Zhou & Teng 2010; Sue et al. 2011).
In this study, only benchmark tests involving a moving bottom obstacle are relevant. Perhaps

due to the difficulty in realising the long physical lengths in the laboratory, 2DH laboratory
experiments on bottom-obstacle-generated waves satisfying the long-wave assumptions are
limited. As remarked by Zhou & Teng (2010), while many 2DH laboratory experiments on
solid-landslide-generated waves have been conducted (e.g., Liu et al. 2005; Panizzo et al. 2005;
Enet & Grilli 2007; Di Risio et al. 2009; Lindstrøm et al. 2014; Romano et al. 2016), weakly
dispersive long-wave models cannot be expected to be applicable to these cases, due to the
relatively short landslide and/or the sharp landslide shapes used. There are also laboratory
experiments on granular-landslide-generated waves (e.g., Fritz et al. 2004; Heller & Hager 2010;
Mohammed & Fritz 2012; McFall & Fritz 2016). However, granular materials require different
modeling techniques, which are beyond the current capability of our numerical model. 3D CFD
(Computational Fluid Dynamics) or nonhydrostatic models may be necessary for predicting water
waves generated by a deformable subaerial landslide (see e.g., Ma et al. 2015, Kim et al. 2020 and
Hu et al. 2020). As a result of the above-mentioned reasons, only 1DH bottom-obstacle-generated
wave benchmark tests have been performed.
The most relevant benchmark test isWhittaker et al. (2017)’s 1DH experiments involving water
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Figure 1: The semi-elliptical obstacle (solid line) used in Whittaker et al. (2017)’s
laboratory experiments and CFD simulations compared with the Gaussian-shaped

obstacle (dashed line) used in our long-wave numerical models. The two shapes enclose
the same area. The maximum thickness of the obstacle is used to normalise B0, and the

characteristic length of the Gaussian shape, L ' 0.627 m, is used to normalise x.

waves generated by a moving bottom obstacle in a constant water depth of d = 0.175 m. A semi-
elliptical bottom obstacle of length 0.5 m and height 0.026 m was used in the experiments. Since
a semi-ellipse has discontinuities at the two edges and cannot be accurately resolved by long-wave
models, a Gaussian-shaped landslide of the same height A = 0.026 m and enclosed area is used
in the numerical simulations. The resulting Gaussian-shaped obstacle has a characteristic length
scale L = 0.5

√
π/2 ' 0.627 m based on the shape definition (2.28) in the main paper. The two

shapes are compared in figure 1.
In the case considered, the bottom obstacle accelerates for a dimensionless duration of tacc =

0.913 (we recall that time is normalised by L/
√
gd) until it reaches a constant normalised speed

of Fr . The obstacle then travels at a constant normalised speed of Fr for a dimensionless duration
of tFr = 4.18, before decelerating to a halt over a dimensionless duration of tdec = 0.913. The
experimental data and the numerical results are compared in figure 2 at three different times,
t = 2, 6, 10. The FNWD results are computed using the fifth-order accurate WENO scheme, with
∆x = 0.05 (normalised by L). The CFD results from Whittaker et al. (2017) are also included.
CFD makes no assumptions on the scales of the water waves, and the actual semi-elliptical
obstacle shape can be used.
As shown in figure 2, the results for the leading waves compare well. There are actually two

leading waves – one propagates in the negative x direction, and the other propagates in the positive
x direction. For brevity, we focus only on the leading wave in the positive x direction, as the
waves in this direction are larger and therefore more visible in the figure. Consistent with the
analytical findings derived in Section 2 in the main paper and long-wave theory in general, the
leading wave has the longest wavelength. Behind it exist oscillatory trailing waves. While these
trailing waves have noticeably shorter wavelengths, their amplitudes are comparable to that of the
leading wave. Discrepancies between the results occur mostly in the trailing waves. Nonetheless,
the overall characteristics are fairly similar. At least for the leading waves, which are our primary
interest, this benchmark test suggests that the long-wave assumptions are met in this experiment,
and that the results calculated by our numerical solver are trustworthy.

S.3.3. Verification
Since there are no suitable experimental data for validating our numerical results for bottom-

obstacle-generated water waves in 2DH, we rely on verification tests to gain confidence in the
numerical results. For a bottom obstacle translating at a constant speed, integral-form analytical
solutions can be obtained for LSWE and LWD (the derivation for LWD is outlined in Section S.2).
Thus, the performance of the linear long-wave models can be easily verified. As examples, the
analytical solutions are compared with the numerical results in figure 3 for LSWE, and in figure 4
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Figure 2: The free surface elevations predicted by different numerical models compared
with Whittaker et al. (2017)’s experimental data. Solid line: FNWD using an approximate
obstacle shape; dashed line: CFD (from Whittaker et al. 2017) using the actual obstacle
shape; dotted line: experimental data; dash-dot line: the crest location of the bottom

obstacle. (a) t = 2; (b) t = 6; (c) t = 10.
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Figure 3: The linear and nondispersive free surface elevations predicted by different wave
models plotted along four different directions at t = 10, with Fr = 0.5 and the

Gaussian-shaped B0 given in (2.28) in the main paper. Solid line: numerical results based
on FNWD with ε = 0.01 and µ = 0.01; dash-dot line: numerical results based on LSWE;
circle: the LSWE analytical solution, (2.18) in the main paper with µ→ 0; dashed line:
the far-field shallow water solution (2.32) in the main paper, accurate for large r . (a):

θ = 0; (b): θ = π/4; (c): θ = 3π/4; (d): θ = π.

for LWD, at the instant t = 10. Whereas the LSWE results compare well, the LWD results shows
some discrepancy in the trailing waves. These trailing waves can be very short and oscillatory –
the wavelengths can be as short as roughly one tenth of that of the leading wave in figure 4. As a
result, very high (higher than the present grid spacing, ∆x = ∆y = 0.05) grid resolution is needed
to accurately capture all trailing waves. As our primary interest is in the leading long waves, we
neither seek nor expect to capture the short trailing waves; the results for the leading long waves
all agree nearly perfectly.
In addition, as another means of verification, long-wave models should converge to one another

in the right scaling limits. For example, if a very thin obstacle is used so that ε → 0, the NSWE
results should converge to the LSWE results, and the FNWD or WNWD results should converge
to the LWD results. Similarly, if a very long obstacle is used so that µ → 0, the LWD results
should converge to the LSWE results, and the FNWD or WNWD results should converge to the
NSWE results. Lastly, if a very thin and very long obstacle is used so that ε → 0 and µ→ 0, the
FNWD or WNWD results should converge to the LSWE results. In figure 3, this is verified for
FNWD with ε = 0.01 and µ = 0.01; the FNWD results indeed converge to the LSWE results. In



14

0 5 10

r

-0.1

-0.05

0

0.05 (a)

0 5 10

r

-0.02

0

0.02
(b)

0 5 10

r

-0.02

0

0.02
(c)

0 5 10

r

-0.02

0

0.02
(d)

Figure 4: The linear and dispersive free surface elevations predicted by different wave
models plotted along four different directions at t = 10, with Fr = 0.5, µ = 0.3 and the

Gaussian-shaped B0 given in (2.28) in the main paper. Solid line: numerical results based
on FNWD with ε = 0.01; dash-dot line: numerical results based on LWD; circle: the LWD

analytical solution (S.2.14); dashed line: the first term of the far-field leading wave
solution (2.22) in the main paper, accurate for large r and near r = t. (a): θ = 0; (b):

θ = π/4; (c): θ = 3π/4; (d): θ = π.

figure 4, this is verified for FNWDwith µ = 0.01; the FNWD results indeed converge to the LWD
results. Small discrepancy in the amplitudes can be seen in the trailing waves. This is likely due to
the numerical dissipation inherent in MUSCL-type numerical schemes – to save on computation
time in 2DH, the second-order accurate MUSCL scheme with grid spacing ∆x = ∆y = 0.05 was
used in the nonlinear long-wave model solvers. Again, since our primary interest is in the leading
long waves, we do not seek to accurately capture all trailing waves; the results for the leading
long waves all agree nearly perfectly.
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