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This supplementary material presents further results that are used in the main paper.

S1. Estimation of the skin-friction drag reduction by Koch &
Kozulovic (2013, 2014)

We discuss the procedure adopted by KK13 and KK14 to estimate the turbulent drag
reduction on the surface of their passively spinning discs, shown in figure 1. KK13 and
KK14 carried out seven experiments in a closed-circuit wind tunnel. The main flow
parameters and results are summarized in table S1.

Although KK13 and KK14 measured the streamwise velocity profiles on and down-
stream of the disc, the wall-shear stress on the disc surface was not measured directly.
They measured f∗, the average number of revolutions per second of the disc, and
derived the spatial distribution of the streamwise slip length by assuming that the
disc angular was constant, i.e., u∗s(z∗) = 2πf∗z∗, where z∗ is the spanwise distance
from the disc center. It was further assumed that the 99% boundary-layer thickness
δ∗99 over the disc was identical to the fixed-wall case. The boundary-layer thickness was
measured experimentally at three spanwise distances from the disc centre and was in
good agreement with the fixed-wall value, supporting the assumption. The wall-shear
stress τ∗w on the disc surface was estimated by modifying correlations for the skin-friction
coefficient and the boundary-layer thickness, valid in the fixed-wall case:

τ∗w(x∗, z∗) = 0.0225ρ∗ν∗1/4 [U∗∞ − u∗s(z∗)]7/4

δ99(x∗)1/4 , (S1.1)

δ∗99(x∗) = 0.37(x∗ − x∗v)
[

ν∗

U∗∞(x∗ − x∗v)

]1/5
, (S1.2)

where U∗∞ is the free-stream velocity, ν∗ is the kinematic viscosity of air, and x∗v is the
virtual origin of the turbulent boundary layer, calculated by upstream extrapolation of
the downstream measurements of δ∗99. The spatial distribution of the reduction of the
wall-shear stress,Rxz, is obtained by use of (S1.1) with and without the local slip velocity
u∗s:

Rxz(%) = 100
[

1−
(

1− u∗s
U∗∞

)7/4
]
. (S1.3)
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Table S1: Flow parameters and results of the boundary-layer experiments from KK13
and KK14.

U∗∞ [m/s] δ∗99 [mm] f∗ [1/s] Reτ D+ W
+

U+
s,D Rd(%)

20.32 3.98 9.94 276 6943 3.00 1.27 11.2
25.38 3.80 14.33 322 8481 3.54 1.50 12.6
30.41 3.67 19.01 366 9980 3.99 1.69 13.9
35.6 3.55 23.78 409 11500 4.33 1.84 14.7
40.7 3.46 28.78 449 12973 4.65 1.97 15.6
45.86 3.38 34.04 488 14444 4.94 2.09 16.3
50.96 3.31 39.04 525 15882 5.15 2.19 17.1

The spatially-averaged drag reduction over the half disc, Rd, is computed by numerically
integrating (S1.3) for our friction Reynolds number Reτ=180. The result is shown in
figure 12.

S2. Modelling of torques below the disc surface
The modelling of the torques given by the ball bearing and by the fluid friction in the

housing cavity is presented.

S2.1. Torque produced by the ball bearing
Each disc is supported by a ball bearing fixed onto its shaft, as shown in dark grey in

figure 3. The resisting torque Tb of a rolling-element bearing is caused by a combination
of phenomena, such as lubrication, material deformation, thermal losses, and others.
Its complete modelling is complex and the industrial estimates are usually performed
through the use of empirical formulas (Harris & Kotzalas 2006). The main contribution
to Tb is the load-induced rolling friction arising from the pressure contact between the
rotary elements and the metal grooves, often named races. The interaction is similar to
that experienced by train wheels on rail tracks.

Our estimate of Tb is based on the empirical formulas provided by a manufacturer of
rolling-element bearings, the Swedish company SKF (www.skf.com). A realistic bearing
model must be selected by considering the water-channel flow presented in table 1. The
critical aspect is the capability of the bearing to support the axial load of the weight
of the disc without generating a high-friction torque. Watertight seals are often used to
protect the lubricant, but they are not modelled in our case because lubrication is not
required for our slowly rotating and lightly loaded bearings.

A sound choice is a SKF angular-contact thrust bearing belonging to the series 7009.
These bearings produce small friction under high axial loads and are available in sizes
that are compatible with the required design. Using the bearing data-sheet parameters
and an axial load corresponding to the weight of a disc of diameter D = 5, the SKF
formulas return a friction torque that, translated into our outer units, is |Tb| = 0.0001.
The effect of the axial load can be neglected because the weight of the disc is negligible.
The use of a bearing torque that does not depend on W is justified because, at our slow
rotation rates, only rolling friction occurs, which is nearly independent of the angular
velocity. The bearing torque is therefore modelled as Tb = |Tb|sgn(W ). The sign of the
disc-tip velocity is accounted for because the friction of the bearing opposes the rotation.

www.skf.com
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S2.2. Torque produced by the fluid friction in the housing cavity

The motion of the fluid within the cavity under a disc results in a resisting torque Th
acting on the bottom surface of the disc. Two predictive models for Th are used, thus
avoiding the full simulation of the cavity flow.

We consider an idealized case where the disc angular velocity fluctuates following a
monochromatic sinusoidal wave of zero mean and frequency f∗. We assume that the
scaled frequency is small, i.e., d∗h

√
f∗/ν∗ � 1, in order to model the cavity flow in

a quasi-steady regime (a similar definition for a different oscillating-flow configuration
is found in Barenghi & Jones 1989). In the case of full discs, shown in figure 2a, the
discs fluctuate randomly, i.e., the time history of the disc motion shows a continuous
frequency spectrum. The quasi-steadiness assumption is valid in all the cases because a
large fraction of the disc kinetic energy corresponds to a range of frequencies f∗ of the
spectrum for which d∗h

√
f∗/ν∗ � 1. In the half-disc cases, shown in figure 2b, the discs

rotate with a finite mean angular velocity and thus the quasi-steadiness assumption is
also always verified due to the standard deviation of the velocity fluctuations being much
smaller than their temporal average. A further assumption is that the flow in the cavity
is laminar. The steady flow between two coaxial infinite discs, one at rest and the other
one moving with constant angular velocity Ω, was studied by Stewartson (1953) in the
laminar regime at small and moderate Reynolds numbers. The azimuthal velocity uθ is
independent of the other two components, uθ = rΩyh/dh, where yh is the wall-normal
coordinate within the cavity and r is the radial coordinate with origin at the centre of
the disc. The resisting torque is:

Th = πD4

32dhRep
Ω. (S2.1)

We also model the flow in the cavity through the swirling boundary-layer solution of von
Kármán (1921) for the flow induced by a disc beneath a semi-infinite fluid. The torque
of the von-Kármán solution reads:

Th = sgn(Ω) πGD4

32Re1/2
p

|Ω|3/2, (S2.2)

where G = 0.6159 is a numerically-determined constant.

The most rigorous method to check the validity of the assumptions would be to carry
out a DNS simulation of the cavity flow for each case, from which the scaled frequency
parameter can be computed and the mean profiles and the resisting torque can be
checked against the predictive model. This approach was not pursued because it is too
computationally demanding. Future work should certainly be directed at improving the
predictive model of the resisting cavity torque, mainly in view of quantitative comparisons
with experimental data. Additional factors that will have to be modelled include the
viscous shear stresses on the shaft supporting the disc, the secondary flows inside the
cavity due to the ball bearing and the uneven steps or gaps, such as those of the
experimental set-up shown in figure 1, and the effects of the transitional and turbulent
flows inside the cavity at large angular velocities. The fluid friction below the disc could
be minimized by designing the disc housing to be air filled, thus sealed from the turbulent
flow of water on top of the disc.
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NSE,
fixed-wall BC

fluid dynamics

∫
S τw,0×(x− xc) dS

fluid torque (3.3)

τw,0
Ẇ0IR

−1 =
∑

i Ti

disc dynamics (3.1)

Tf,0 W0Px

Figure S1: Block-diagram of the uncoupled disc-fluid system.

S3. Uncoupled dynamics of the full discs
S3.1. Modelling of the uncoupled dynamics of the full discs

The full-disc configuration is also studied under the simplifying assumption that the
disc-tip velocity W is small. This assumption is reasonable as verified by the two-
way-coupling simulations. In this uncoupled system, the torque engendered by the wall
turbulence causes the motion of the discs, but the disc-tip velocity is so small that the
wall turbulence is unaffected by the disc rotation. It is therefore a one-way coupling
system, where the NSE are subject to the no-slip stationary-wall boundary conditions.
Figure S1 depicts the uncoupled system, where there is no feedback from the disc to
the fluid boundary conditions. The wall-shear-stress torque on the disc is first computed
using the reference fixed-wall turbulent channel flow, and then the torque determines the
disc dynamics.

The uncoupled system is obtained by a regular perturbation expansion for small W .
We define the small parameter ε = maxt [W ∗(t∗)] /U∗p � 1 and we further assume that
W/Tf = O(1), which is also reasonable because the instantaneous torque, Tf � 1, is given
by the statistically homogeneous wall-shear stress acting over a disc without a preferential
angular direction. We first expand the disc velocity as W (t) = εWm

0 (t) + O(ε2) (where
Wm

0 = W ∗/maxt [W ∗] = O(1)), the fluid velocity and pressure as (u, p)(x, t;W ) =
(u0, p0)(x, t) + ε(u1, p1)(x, t) +O(ε2), the wall-shear stress as τw(x, t;W ) = τw,0(x, t) +
ετw,1(x, t) + O(ε2), and the torque as Tf (t;W ) = εTmf,0(t) + ε2Tmf,1(t) + O(ε2). (The
subscript “0” henceforth indicates quantities that refer to the uncoupled case.) By
substituting these expansions into (2.1), (2.2), (3.1), and (3.2), one finds that u0 satisfies
the reference fixed-wall NSE equations at leading order and that, at the next order O(ε),
the disc-tip velocity Wm

0 satisfies the dynamical equation driven by the fixed-wall torque
Tmf,0. At this next order, u1 satisfies linearized NSE equations, where the convection is
driven by u0 and the wall boundary conditions synthesize the effect of the disc rotation
on the fluid motion. We do not solve for u1 as we are interested in the leading-order
behaviour. The feedback loop thus vanishes as the leading-order expansion leads to the
no-slip stationary-wall boundary conditions.

The uncoupled model has a number of advantages over the coupled model. First, the
uncoupled results can be compared to those from the coupled simulations, assessing the
impact of the two-way coupling on the disc dynamics and the fluid flow. Second, in
the uncoupled case, the equation of motion of the disc is linear because the torque is
a known function of the turbulent flow. Therefore, the system is more easily studied in
the frequency domain and the linearity of the disc equation of motion allows the explicit
calculation of the frequency response of the disc dynamics to the fluid torque. Third,
contrary to the coupled case, it is not required to perform new simulations for cases with
discs of different diameter, but it is sufficient to simulate the fixed-wall channel flow once
and then, from this flow, extract the fluid torques exerted on the disc-shaped patches of
choice. This approach allows the study of a large number of cases: we have considered
seventy diameters in the range D+ = 20− 1200.
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Figure S2: Standardized histogram plots of (a) W0 and (b) Tf,0 for uncoupled-dynamics
simulations. The solid line denotes the standard normal distribution.

S3.2. Uncoupled dynamics in the physical domain
This section discusses the uncoupled disc-fluid dynamics, represented schematically in

the block-diagram of figure S1. The dynamics is still described by (4.1), but it becomes
linear in the limit of small W because the torque Tf,0 is given by the fixed-wall reference
flow. The solution to the uncoupled (4.1) is

W0(t) = 16e−Cht

πbρdD3

∫ t

0

[
Tf,0

(
t̂
)
− Tb

]
eCh t̂ dt̂, (S3.1)

where Ch = (Repdhbρd)−1 and W0(t = 0) = 0.
The red symbols in figure 7 show that W0,rms behaves qualitatively as Wrms in the

coupled-dynamics case, i.e., it decays asD−0.7 after the maximum response forD+ = 100.
The fixed-wall fluid torque Tf,0 also follows a similar behaviour to the coupled case. The
dependence of Tf,0 on D in the large-D range matches that of the coupled case, i.e.,
it also grows as D2.2. The values of W0,rms and Tf,0,rms are up to three times larger
than in the coupled case, regardless of D. This result proves that the two-way interaction
between the disc and the fluid produces an attenuating effect on the disc velocity and
the torque.

The time evolutions of the fluid torque components T xf,0 and T zf,0 for the uncoupled
case are shown in figure 9a (bottom). Differently from the coupled case, where the torque
components are strongly anti-correlated, there is no noticeable correlation between T xf,0
and T zf,0. The contributions of the components of equation (4.2) to Var(Tf,0) for the
uncoupled case are presented in figure 9b by the blue symbols. Similar to the coupled
simulations, the streamwise component of the torque dominates over the other two
components. The magnitudes of the variance T z2

f,0 and covariance T xf,0T
z
f,0 are much

smaller than in the coupled simulations.
Figure S2 shows the standardized histograms of W0 and Tf,0. The coupling has a

negligible effect on the trends as the W0 values follow the normal distribution for all the
diameters and the heavy-tail behaviour of Tf,0 deviates from the normal curve at small
diameters by a similar amount as in the coupled case.
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Ĝ0
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τ̂w,0(f, κx, κz)
F̂0

disc dynamics

T̂f,0(f) Ŵ0(f)P̂x

Figure S3: Block-diagram of the uncoupled disc-fluid system in the wavenumber-
frequency domain, where τ̂w,0(κx, κz, f) is the wavenumber-frequency spectrum of the
wall-shear stress, κx and κz are the streamwise and spanwise wavenumbers, f is the
frequency, and the hat indicates the Fourier transform. Ĝ0 and F̂0 are the Fourier
transforms of the fluid-torque integral (3.3) and the disc dynamical equation (4.1),
respectively.
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Figure S4: Power spectral densities, denoted by S with subscripts indicating the quantity
and shown in pre-multiplied form. (a) Disc-tip velocity W0 and (b) fluid torque Tf,0,
computed from uncoupled-dynamics simulations. The plots are normalized with the total
power.

S3.3. Uncoupled dynamics in the frequency domain
The dynamics of the full discs for small W is also investigated in the frequency domain,

as shown in figure S3. As the response functions are difficult to study in the nonlinear
coupled case, we focus on the linear uncoupled system.

The normalized PSDs of the disc-tip velocity and the fluid torque are displayed in
figure S4. The PSDs of W0 also follow an analogous behaviour to the coupled case, with
the lower frequencies contributing more to the total power as D increases. Similar to
the coupled case, the trends shift to low frequencies as the diameter increases and both
quantities show the peak at about f+=0.005. These maxima are now much more distinct
than in the coupled case and the energy distribution of Tf,0 at higher frequencies is
flatter.

The frequency-domain solution of (3.1) is:

Ŵ0 = 16
πbρsD3(2πif + Ch) T̂f,0, (S3.2)

where we have excluded Tb because Tb � Th,0, revealing the scaling with D−3 and
the inverse dependence on b and ρs, i.e., a thinner disc or a lighter material result in
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Figure S5: (a) Transfer functions from the uncoupled exact theory (dashed lines) and
calculated from the coupled DNS simulations (solid lines). (b) Colour map plot of |ΨxR|
as a function of the inverse of the streamwise and spanwise wavelengths, normalized with
the disc diameter. This choice of coordinates emphasizes how the relative scale of the
shear-stress wavelengths to the disc size affects the filtering properties of ΨxR.

larger W . Equation (S3.2) can be written as F̂0 = Ŵ0/T̂f,0, so that the gain is |F̂0| =
16/πbρsD3

√
4π2f2 + C2

h. By neglecting friction to extract information about inertia,
|F̂0,s| = 16/πbρsD32πf . Figure S5 depicts the scaled |F̂ |. When computed from the
coupled nonlinear simulations, the procedure is not rigorous, but it offers a tool to assess
whether the model is valid. The dashed lines show the matching with the inertia-driven
behaviour for large frequencies ∼ f−1 and the constant behaviour at low frequencies,
dictated by the housing-torque viscous effects. We find F̂0 > F̂ at any f , with the
difference reducing as D−0.8 as D increases.

To study Ĝ0, shown in figure S3, we neglect the dependence of Tf,0 on time and study its
variance using temporally uncorrelated realizations Tf,0(ti), where the ti are sufficiently
delayed. We study the x-component T xf,0, given in (3.3) (the analysis is analogous for
T zf,0), i.e.,

T xf,0(ti;R) =
∫
S
zF−1

xz

{
τ̂w,x,0

}
(κx, κz)}dxdz = (S3.3)

=
∫∫

R2
τ̂w,x,0(κx, κz)

(
1

4π2

∫
S
zeiκxxeiκzzdxdz

)
dκxdκz (S3.4)

=
∫∫

R2
τ̂w,x,0Ψ

x
R dκxdκz, (S3.5)

where S is the disc surface, τ̂w,x,0 is the spatial Fourier transform of τw,x,0(x, z), and
F−1
xz {·} is its inverse. The function ΨxR(κx, κz) simplifies to:

ΨxR(κx, κz) = R3Ψ(Rκx, Rκz), (S3.6)

where Ψ is

Ψ(κ1, κ2) = 1
2π2κ1

∫ 1

−1
z sin

(
κ1
√

1− z2
)

eiκ2zdz. (S3.7)

We then study the magnitudes |τ̂w,x,0| and |ΨxR| as the largest contribution to Var(T xf,0).
The phase spectra Φτ and Φψ also contribute to Var(T xf,0). The fixed-channel simulation
data render Φτ a function with a uniformly distributed random phase. The function Φψ
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takes discrete values of either −π/2 or π/2, the sign being dictated by the same radial
period observed for the oscillations of |ΨxR|.

Figure S5b shows the magnitude |ΨxR| of the spectral filter function, calculated by
solving the integral in (S3.7) numerically. The axes use the reciprocal of the wavelength
(i.e., 1/λx=κx/2π) normalized with the disc diameter to visualize the filtering behaviour
of ΨxR relative to the disc size. As the function |ΨxR| is even with respect to both
wavenumbers, only the first quadrant is shown. A series of regularly-spaced oscillations
can be observed, centred at the origin and decreasing in intensity at higher values of the
diameter-wavelength ratio. The period of these oscillations, calculated along a radial
direction centred at the origin, is D/λ=1 where λ =

√
λ2
x + λ2

z, which means that
|ΨxR| privileges spanwise modes, gradually decreasing at low spanwise wavenumbers and
vanishing completely for purely streamwise modes. The maximum of |ΨxR| is determined to
be a purely spanwise mode such that D/λz = 0.732. The largest individual contribution
to the torque is given by the spanwise mode of τw,x,0 whose wavelength is 1.37 times the
diameter.

When observed in the absolute coordinates 1/λx and 1/λz, the map of figure S5b
corresponds to the case D = 1. When the disc size increases for D > 1, the coordinates
scale linearly with D, which means that the maximum of |ΨxR| moves closer to κz =
0 and the radial wavelength of the oscillations decreases linearly, visually generating
a “shrinking” effect centred at the origin. Similarly, when D < 1, |ΨxR| undergoes an
“expansion” according to the same proportionality of the coordinates to D. The other
effect of varying the disc size is that |ΨxR| is uniformly amplified by a factor of R3,
according to (S3.6). Larger discs therefore produce a very intense, localized filtering near
the origin, while smaller discs have a weaker, spread-out filtering across a broad range of
wavenumbers.

The PSD of the streamwise wall-shear stress reveals where the contributions to |τ̂w,x,0|
are located on average (not shown). It is found that, as |ΨxR| decreases and spreads out
for increasingly large D, the entire shear-stress PSD attenuates, leading to smaller torque
values. Conversely, for sufficiently small D, ΨxR has an amplifying effect, with the most
amplified modes being those of small streamwise wavenumbers, which correspond to the
energy-containing region of the shear-stress PSD. Therefore, increasingly intense values
of the torque occur as the disc size increases. This result qualitatively corresponds to
that observed in figure 7, the precise dependence on D being determined by the specific
form of the shear-stress spectrum.

As discussed in §4, the spanwise shear-stress torque T zf is much smaller than the
streamwise one. A relation analogous to (S3.5) is derived for T zf :

T zf,0(R) =
∫∫

R2
τ̂w,z,0Ψ

z
R dκxdκz. (S3.8)

The difference between the spanwise filter function and the streamwise case is that
ΨzR(κx, κz) = R3Ψ(Rκz, Rκx), i.e., the spanwise and the streamwise wavenumbers are
exchanged. This result can be shown by substituting z with x in (S3.5) and calculating
the spatial integral. As implied by its definition, ΨzR privileges streamwise modes of τ̂w,z,0
(as opposed to spanwise for ΨzR) and its maximum amplification happens for the purely
streamwise mode such that D/λx ≈ 0.732.

The variance of Tf,0 is calculated by evaluating the variance of the right-hand side
of (S3.5) and (S3.8) over the ensemble of uncorrelated shear-stress fields produced from
the numerical simulation of the fixed-wall channel. After taking the square root, the
resulting curve, measured directly from the spatial wall shear-stress fields through (3.3)
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and shown in figure S5b alongside Tf,0,rms(D), shows excellent quantitative agreement
with the numerical data.

It is conjectured that the change of slope occurring at around D+=100 in figure 7
originates from the scaling behaviour of the filter-function kernel ΨxR with respect to
D. According to (S3.6) and the visualization shown in figure S5b, ΨxR has two possible
mechanisms for amplifying the wall-shear-stress modes. First, its amplitude grows as
D3 and, second, its maxima move relative to the wall-shear-stress spectrum maximum
because the coordinates scale with D. While the first mechanism always results in an
uniformly increasing amplification, the effect of the second mechanism is significant only
when the ΨxR maximum overlaps the region of maximum energy concentration of the
wall-shear stress. On the contrary, if the ΨxR maximum overlaps modes for which the
wall-shear-stress PSD is zero, no local amplification takes place and those modes do not
contribute to the integral (S3.5). Therefore, as D increases and the ΨxR maximum moves
closer to the origin, initially a regime is expected where both the first and the second
mechanisms work in favour of the amplification because the kernel maximum moves
progressively closer to the PSD maximum, until the two overlap. Thereafter, a regime
of reduced amplification rate, i.e., a gentler slope of the Tf,rms(D) curve, is expected
because the two maxima move apart. The diameter Dc at which the maximum of |ΨxR| and
the maximum of Sττ overlap can be used as an estimate of the slope-changing diameter.
It is found that the maximum of Sττ is located at around 1/λz = 1.2, which implies that
Dc=0.732/1.2=0.61 or D+

c ≈ 110 in viscous units. This value matches the slope-changing
point of Tf,0,rms(D) well, qualitatively endorsing the conjectured mechanism.
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