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We carried out some preliminary simulations with a Galilei number Ga = 5770 and a Morton
number Mo = 2.5 × 10−11, a value representative of water in the standard state. Due to time
constraints, the simulations are somewhat under-resolved, but the results support those reported
in the paper and are indicative of the trends to be expected for this larger value of Ga and smaller
value of Mo.

With the physical parameters of water, the simulation corresponds to a round tube with an
inner diameter of 15 mm; the cage diameter is 11.5 mm, the annulus width 1.78 mm and the rod
diameter of 1.09 mm. The computed rise velocity of the bubble was 0.227 m/s to be compared
with that predicted by the relation 0.351

√
gD which, with D = 15 mm, gives 0.135 m/s. The

enhancement of the bubble rise velocity is therefore nearly 70% as in case A of the paper. The
bubble Reynolds number (based on the cage diameter) is 2604. The bubble velocity exhibited some
oscillations but was consistent with the previously quoted value (see figure 1). However, steady

Figure 1: Position vs. time of the bubble tip. The dashed line corresponds to the (dimensional)
velocity UB = 0.227 m/s quoted in the text. The arrows indicate the instants at which the bubble
shapes shown in figure 2 are taken.
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Figure 2: Probably due to the limited simulation time, in this simulation the bubble did not quite
reach steady conditions but exhibited oscillations in the axial direction as shown here. The instants
corresponding to the images shown are marked by arrows in figure 1.

conditions were not quite reached and the bubble exhibited shape oscillations in the axial direction,
examples of which are shown in figure 2

Figure 3, to be compared with figure 4 in the paper, shows, from left to right, the pressure
distribution, the vertical and horizontal liquid velocities and the bubble configuration at the instant

Figure 3: This figure is analogous to figure 4 in the paper and shows, from left to right, the pressure
distribution, the vertical and horizontal liquid velocities and the bubble configuration at the instant
these data are taken. The dashed line in panel (a) is the pressure along the axis of the tube, with
the straight vertical portion the (constant) pressure in the bubble. The purple curve in (a) and the
blue and red curves in (b) are taken along a line through the middle of the annulus.
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Figure 4: Color maps of the radial velocity, in (a), and of the vertical velocity, in (b) on vertical
and horizontal planes. The latter are taken at the levels indicated by the arrows and the dotted
lines.

these data are taken. The dashed line in panel (a) is the pressure along the axis of the tube, with
the straight vertical portion the (constant) pressure in the bubble. The purple curve in (a) and
the blue and red curves in (b) are taken along a line through the middle of the annulus. At the
instant shown the transition zone toward the bubble tip is shortened which causes a faster outward
flow into the annulus (red curve in (b)). The annulus-core pressure difference under the bubble is
also significantly smaller than that shown in figure 4 of the paper. The negative vertical velocity
extending well below the bubble in panel (b) indicates the presence of a long recirculating wake
which delays the flow from the annulus back into the tube core. This is a well-known feature in
high-Reynolds-number Taylor bubble flows. The waviness of the lines in panel (b) may perhaps
be affected by the imperfect numerical resolution, but it must also be due to flow instabilities and
unsteadiness since the Reynolds number of the flow in the annulus is about 560.

The color maps in figure 4, analogous to those of figure 5 in the paper, show the horizontal, in
(a), and vertical, in (b), velocity distributions in a vertical plane and in two horizontal planes taken
at the levels indicated by the arrows and dotted lines. Note in panel (a) the strong radial velocity
issuing from the gap between the rods. This jet-like flow strikes the tube wall, where it splits into
two streams which are carried downward by the flow in the annulus. The resulting streamlines take
on a corkscrew appearance as shown in figure 5. The lower horizontal cut in panel (b) shows that,
unlike the case of ordinary Taylor bubbles, the recirculating wake does not have axial symmetry
but consists of lobes, corresponding to the position of the rods, separated by lower velocity streaks
in correspondence of the radial inflow that can be seen in the lower horizontal cut of panel (a).

Some aspects of the complex flow in the annulus are illustrated in figure 5. Panel (a) gives a
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Figure 5: (a) Three-dimensional view of two streamlines in the computational domain. (b) Per-
spective view of the same streamlines from the above. (c) View from above of the vortices created
in the annulus by the jet-like flow issuing from the gap between the rods.

Figure 6: Color maps of the radial (a), azimuthal (b) and axial (c) velocities in a sector of the tube
at the level of the middle of the bubble.
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three-dimensional view of two streamlines. Panel (b) is a perspective view of the same streamlines
in the annulus seen from above; the rods would be at the left end of the figure. Panel (c) is a view
of the spiraling flow initiated in the annulus by the jet-like flow issuing from the gap between the
rods at the top of the bubble; this view is taken at the middle of the bubble.

Color maps of the radial, azimuthal and vertical velocities at a level located at the middle of
the bubble are shown in panels (a), (b) and (c) of figure 6. The radial velocity is positive opposite
the gap and negative behind the rods. The azimuthal velocity exhibits the clover-leaf pattern
characteristic of vortices (see figure 5). The vertical velocity is relatively large and downward.
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