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1. DEM contact model

A linear spring-dashpot interaction model is used to calculate inter-particle collisional
forces at the point of contact (Cundall & Strack 1979). For a pair of colliding spheres
(indicated by subscripts j, k) the normal contact force is

F n
jk = [knε− 2γnmeff (Vjk · r̂jk)]r̂jk, (1.1)

where r̂jk is the normal unit vector, meff = mkml/(mk+ml) is the effective mass, and ε
and Vjk are the overlap and relative velocity between the two spheres, respectively. The
normal stiffness

kn = [(π/tc)
2 + γ2n]meff (1.2)

and damping

γn = − ln(e)/tc (1.3)

are determined from the restitution coefficient e and binary collision time tc. The
tangential force is specified by a linear spring model with Coulomb friction (Shäfer et al.
1996)

F t
jk = −min(|ksβ|, |µF n

jk|)sgn(β)ŝ. (1.4)

Here ŝ is the unit vector in the tangential direction. The tangential stiffness is ks = 2
7kn,

and the tangential displacement magnitude is

β(t) =

∫ t

ts

V sjkdt, (1.5)

where ts is the initial contact time and V sjk is the relative tangential velocity. The
numerical implementation of equation (1.5) is provided elsewhere (Weinhart et al. 2020).

2. Collisional diffusion

The time evolution of the mean-squared displacement in the normal direction, MSDz,
for particles at approximately the same streamwise position (x/L = 0.5) but different
depths (z/δ = −0.1, -0.3, -0.5, -0.7, -0.9) is plotted in figure 2.1(a). As expected, the
mean-squared displacement increases with time interval ∆t at all five positions, and
decreases with increasing depth at all times. The best fit line for each data set has a
slope greater than 1 at smaller time intervals but a slope of 1 at larger time intervals,
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Figure 2.1. (a) MSD vs. ∆t at different depths at x/L = 0.5. (b) D vs. γ̇d̄2 [see equation (2.8)].
Line represents the best fit 0.046γ̇d̄2 for γ̇d̄2 > 0.1. Only data for x/L > 0.1 and z/δ > −3 are
plotted. Rd = 2, Rρ = 4, and ĉl = 0.5.

indicating that particle motion is diffusive for large ∆t and super-diffusive (approaching
ballistic) for small ∆t as expected.

The diffusion coefficient of the mixture, D, is estimated as one-half of the slope of the
best fit line to MSDz versus ∆t in the range 0.05 s to 0.3 s. In addition, D is plotted as
a function of γ̇d̄2 in figure 2.1(b). The approximately linear dependence of D on γ̇d̄2 in
the dense rapid flow regime (γ̇d̄2 > 0.1) and the slope of the fitting line are consistent
with previous studies (Fan et al. 2015). Deviation of the data points from the fitting line
for γ̇d̄2 > 0.1 could be a result of varying total solid volume fraction (φtotal) across the
flowing layer, as previous studies of uniform shear flows show that the diffusion coefficient
varies with φtotal in addition to γ̇d̄2 (Cai et al. 2019).

3. Segregation model coefficients

As described with respect to figure 9 of the paper, it is difficult to collapse the data for
the model coefficients Al and Bl using a principled approach. Nevertheless, it is possible
to devise empirical expressions for these coefficients. To do so, we first fit functions to the
values of the coefficients at the maximum value for Rρ that was considered (Rρ = 4). It is
helpful to anchor the functional dependence to the maximum value of Rρ because of the
asymmetry of the coefficients in figure 9. Specifically, we assign f1(Rd) = Al(Rd, Rρ = 4)
and f2(Rd) = Al(Rd, Rρ = 4)+Bl(Rd, Rρ = 4). As shown in figure 3.1(a), the best linear
fit of f1 to the data is

f1 = 0.4Rd − 0.4474. (3.1)

Figure 3.1(b) shows that f2 is quadratic in Rd, which is fit by

f2 = −0.1342R2
d + 0.3514Rd − 0.3646. (3.2)

In addition, we find that Al− f1 for different Rd collapses reasonably well onto a master
curve as shown in figure 3.2(a), which is expressed as

Al − f1 = 0.35e−2Rρ . (3.3)

Similarly, (Al +Bl − f2)/Rd data collapses onto a master curve as shown in figure 3.2(b),
which takes the form

Al +Bl − f2
Rd

= 0.43e−0.2Rρ − 0.2, (3.4)
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Figure 3.1. (a) f1 = Al(Rd, Rρ = 4) and (b) f2 = Al(Rd, Rρ = 4) + Bl(Rd, Rρ = 4) vs. Rd.
Data points correspond to those for Rρ = 4 in figure 9. Line and curve are fits to the data as
shown in equations (3.1) and (3.2), respectively.
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Figure 3.2. (a) Al − f1 and (b) (Al +Bl − f2)/Rd vs. Rρ. Different symbols correspond to
those in figure 9. Curves are fits to the data as shown in equations (3.3) and (3.4).

Combining these results, the segregation model coefficients can be estimated as

Al = 0.35e−2Rρ + f1, (3.5)

and

Bl = (0.43e−0.2Rρ − 0.2)Rd −Al + f2. (3.6)

For the monodisperse condition Rd = 1 and Rρ = 1, the empirical equations (3.1, 3.2,
3.5, 3.6) result in Al ≈ 0 and Bl ≈ 0, as should be the case.

4. Mean velocity

Figure 4.1 shows that the streamwise velocity, u, predicted by the kinematic model
[equation (4.2)] matches the DEM simulation results well at all five depths except near
the feed-zone (x/L < 0.1), as expected. This is because in a rotated reference frame
as shown in figure 1, upstream particles at deeper positions are directly beneath the
feed-zone, such that the flow kinematics are affected by falling particles. The nearly
linear decrease of u with x/L for 0.2 < x/L < 0.8 indicates a uniform deposition of
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Figure 4.1. Streamwise velocity profiles at different depths. Symbols represent simulation data
and line is prediction of equation (4.2). The streamwise velocity u is scaled by u0, where
u0 = ux=0,z is calculated from equation (4.2). Rd = 2, Rρ = 4, ĉl = 0.5, q = 20 cm2/s,
δ = 1.5 cm, and L = 52 cm.
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Figure 4.2. Streamwise and normal velocity profiles at different positions along the heap.
Symbols represent simulation data and curves are predictions of equations (4.2) and (4.3).
Velocities are scaled by us and vr cos(α) in the (a) streamwise and (b) normal directions,
respectively, where us is the surface velocity measured from the simulation and vr cos(α) is
the rise velocity of the heap surface.

particles on the heap, consistent with a nearly constant flowing layer thickness away
from endwalls as shown in figure 3(a). Reasonably good agreement between the kinematic
model prediction and simulation is also observed for u and normal velocity w as functions
of z/δ at different streamwise positions in figure 4.2(a) and (b), respectively. For both
cases, the discrepancies are slightly larger for x/L = 0.9 due to the decreasing flowing
layer thickness near the downstream endwall.

5. Gravitational effect on free surface flow segregation

Segregation models by Marks et al. (2012), Tunuguntla et al. (2014), and Gray &
Ancey (2015) indicate that the segregation flux is proportional to g cosα. Note that this is
different from our model for free surface flows in which the segregation model coefficients
Ai and Bi in equation (3.1) are not specified as functions of g or α. To characterize the
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Figure 5.1. Streamwise particle concentration profiles from DEM simulations (symbols) and
model (curves). The two sets of data correspond to g = 9.81 m/s2 (#) and 4.91 m/s2 (×).
ĉl = 0.5, Rd = 1.5, and Rρ = 1.

influence of g cosα, figure 5.1 plots the streamwise particle concentration profiles from
DEM simulations for an example case with two different values of g. These results show
that reducing g by half has minimal influence on the segregation in the DEM simulations,
consistent with our model prediction. This is also consistent with our previous size or
density only segregation model’s lack of dependence on g, which is robust in different
flow geometries (rotating tumbler, 3D heap, hopper discharge) and with different particle
properties, regardless of the repose angle α (Umbanhowar et al. 2019). The reasons behind
this lack of dependence on g cosα are beyond the scope of this study, but one possible
explanation is that both the partial pressure and the inter-species drag are proportional
to g cosα through the lithostatic pressure, and thereby offset one another (Duan et al.
2020).
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