Supplementary Information

Fluid pumping of peristaltic vessel fitted with elastic valves

Ki Tae Wolf¹, J. Brandon Dixon^{1,2,3}, Alexander Alexeev^{1,*}

 ¹ George W. Woodruff School of Mechanical Engineering,
² Petit Institute for Bioengineering and Bioscience,
³ Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332

Movie 1: Axial flow velocity U_x in a valve-less peristaltic vessel without an adverse pressure gradient (top) and with an adverse pressure gradient $\Delta P = 140$ (bottom) yielding respective flow rates Q = 0.15 and Q = -0.22. The contraction ratio is $\phi = 0.2$, and the peristaltic Reynolds number is Re = 0.2.

Movie 2: Valve deformation in a contracting peristaltic vessel with an adverse pressure gradient $\Delta P = 140$. The simulation parameters are $\phi = 0.2$, Re = 0.4, $K_b = 88$, and $K_s = 115$.

Movie 3: Axial flow velocity U_x in a valved vessel without an adverse pressure gradient (top) and with an adverse pressure gradient $\Delta P = 140$ (bottom). The simulation parameters are $\phi = 0.2$, Re = 0.2, $K_b = 88$, and $K_s = 115$.

Movie 4: Valve deformation in a valved vessel without an adverse pressure gradient (top) and with an adverse pressure gradient $\Delta P = 140$ (bottom). The simulation parameters are $\phi = 0.2$, Re = 0.2, $K_b = 88$, and $K_s = 115$.

Movie 5: Axial flow velocity difference ΔU_x in a valved vessel without an adverse pressure gradient (top) and with an adverse pressure gradient $\Delta P = 140$ (bottom). The simulation parameters are $\phi = 0.2$, Re = 0.2, $K_b = 88$, and $K_s = 115$. The flow velocity difference ΔU_x is calculated as the difference between flow velocities in vessels with and without valves.

Movie 6: Deformation of elastic valves with $K_b = 11$ (top), $K_b = 88$ (middle), and $K_b = 263$ (bottom) over a vessel contraction cycle. The simulation parameters are $\Delta P = 140$, $\phi = 0.2$, Re = 0.4, and $K_s = 115$.

^{*} Email: alexander.alexeev@me.gatech.edu; Phone: 404-385-3659; Fax: 404-894-8496