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1 Particle advection

The code Paradvect [2020] integrates the momentum equation of a single particle
(equations (3.13) in the main article) using a first order forward Euler scheme. To verify
the code, we simulate the trajectories of two particles, a small one of diameter ratio
R = 0.01 and a larger one of R = 0.1, advected by a uniform and unidirectional flow
Ū = ex in a domain without obstacles. The grid is the same in these two sets of
simulations. We calculate the temporal discretisation error [Oberkampf and Roy, 2010]
of the x coordinate of the particle path

ε∆t = ||x0,2∆t − x0,∆t||2 =

2∆t

Nf/2∑
i=1

|x0,2∆t(tk)− x0,∆t(tk)|2
1/2

, (1)

where the subscript (.).,∆t refers to the solution with a time step equal to ∆t.
The observed order of accuracy p̂∆t is given by [Oberkampf and Roy, 2010]

p̂∆ =
log(ε∆/ε2∆t)

log(2)
. (2)

The convergence results are plotted in figure 1. We obtained, as expected, a first
order decrease in the discretisation error, and the observed order of accuracy is close to
one for small time steps.

A validation of Paradvect [2020] is given in Boudina et al. [2020], where the capture
efficiency for a fixed cylinder was confronted to theoretical, experimental, and numerical
data from prior studies.
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Figure 1: Verification of the code Paradvect for a small particle (·, R = 0.01) and a large
particle ( , R = 0.1). In both cases, the flow is uniform and unidirectional, without
obstacles, and the grid is the same. (a) Discretisation error using the norm L2, defined
in equation (1). (b) Observed order of accuracy using the Richardson extrapolation. The
dashed lines refer to a linear variation.
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Figure 2: Illustration of a rod having a clamped end, within a fluid flow of upstream
speed U0 in the direction u0. The rod is meshed into elements of same length, each of
them having a local material frame (t,n, b).

2 Elastic rod dynamics

2.1 Kirchhoff equations

We consider an elastic, straight rod with a clamped end, of a mass per unit length ml,
length L, and circular cross-section of diameter D, as sketched in figure 2. This rod has
a flexural rigidity EI and torsional rigidity GJ = (2/3)EI. We refer to a position in the
rod by the arc length s ∈ [0, L], and denote the position vector as w.

We build the material frame, along the rod, from the tangential vector t defined as
[Landau and Lifshitz, 1970]

t =
∂w

∂s
. (3)

The rate of change of the tangential vector along the deformed profile of the rod is
[Audoly and Pomeau, 2010]

∂t

∂s
= Ω× t. (4)

The vector Ω is called the Darboux vector, and quantifies the rate of rotation along the
rod, or in other words, the curvature of the rod.

The second vector of the material frame is the normal vector, denoted n, which also
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varies as
∂n

∂s
= Ω× n. (5)

The vector t is always orthogonal to n since

∂(t · n)

∂s
= (Ω× t) · t + (Ω× n) · n = 0. (6)

We complete the construction of the material frame with the binormal vector b defined
as

b = t× n. (7)

The constitutive equation we use is [Landau and Lifshitz, 1970, Audoly and Pomeau,
2010]

M = EIΩ + (GJ − EI)(Ω · t)t

= EI

[
Ω− 1

3
(Ω · t)t

]
, (8)

with M the internal moment. This is a general formulation that includes twist, as the
product Ω · t might be non-zero for a given load.

Finally, assuming that external moments are absent, the variation of the internal
moment M and internal force Fint reads

∂M

∂s
= Fint × t (9)

∂Fint

∂s
= ml

∂2w

∂t2
− fext, (10)

where fext is the total external force per unit length acting on the rod.
We non-dimensionalise the above equation via

t̃ =
t

ts
, s̃ =

s

L
, w̃ =

1

L
w, Ω̃ = LΩ,

M̃ =
L

EI
M , F̃int =

L2

EI
Fint, f̃ext =

L3

EI
fext, (11)

with

ts = L2

√
ml

EI
(12)

being a characteristic time for the structural deformation. The governing equations be-
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come

∂w̃

∂s̃
= t,

∂t

∂s̃
= Ω̃× t,

∂n

∂s̃
= Ω̃× n,

∂M̃

∂s̃
= F̃int × t,

∂F̃int

∂s̃
=
∂2w̃

∂t̃2
− f̃ext, (13)

with
M̃ = Ω̃− 1

3
(Ω̃ · t)t. (14)

For a rod with a clamped end, the boundary conditions are

w|s=0 = 0, t|s=0 =
∂w

∂s

∣∣∣∣
s=0

= troot, n|s=0 = (troot × u)/ ||troot × u|| ,

M |s=L = 0, Fint|s=L = 0, (15)

where u0 is the upstream flow direction. In dimensionless form, we get

w̃|s̃=0 = 0, t|s̃=0 = troot, n|s̃=0 = (troot × u)/ ||troot × u|| ,
Ω̃|s̃=1 = 0, F̃int|s̃=1 = 0. (16)

2.2 External forces

2.3 Drag

Following the empirical work of Taylor [1952], the axial component of the drag is ne-
glected, and only the components of the fluid velocity that are perpendicular to the rod
generate load. The force that acts on an infinitesimal length ds expresses as

dFD =
1

2
CDDρf (|Urel · n| (Urel · n)n + |Urel · b| (Urel · b)b) ds (17)

where CD is the drag coefficient of the rod cross-section. The vector Urel is the relative
velocity of the flow relative to the rod

Urel = U0u0 −
∂w

∂t
. (18)

The dimensionless form of equation (18) is

urel = u0 − λ
∂w̃

∂t̃
. (19)
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The constant λ is
λ =

L

U0ts
=
StΓ

Ur

, (20)

with St the Strouhal number, Ur = StU0ts/D the reduced velocity, and Γ = L/D the
aspect ratio of the rod. Here λ gives an idea of the magnitude of the rod velocity with
respect to the fluid speed: a small λ indicates a slow rod motion, whereas a large λ
indicates a fast rod motion.

We deduce the drag per unit length

fD =
∂FD

∂s
=

1

2
CDDρfU

2
0 (|un|unn + |ub|ubb), (21)

with
un = urel · n and ub = urel · b. (22)

Therefore, we obtain in dimensionless form

f̃D = CDCY(|un|unn + |ub|ubb). (23)

The ratio
CY =

ρfU
2
0DL

3

2EI
(24)

is the Cauchy number, and compares the fluid-dynamic pressure to the elastic bending
rigidity of the rod [de Langre, 2001].

2.4 Added mass

Regarding the added mass effect, we follow Leclercq and de Langre [2018] and Leclercq
and de Langre [2018] and use the expression for slender structures proposed by Candelier
et al. [2011] (notice the sign of the force and the relative velocity definition (18))

fA = ma

[
U0
∂(unn + ubb)

∂t
+ U2

0

∂ut(unn + ubb)

∂s
− U2

0

2

∂(u2
n + u2

b)t

∂s

]
, (25)

with ma = πρfD
2/4 being the added mass per unit length. The dimensionless form of

the added mass force is

f̃A =
πCY

2Γ

[
λ
∂(unn + ubb)

∂t̃
+
∂ut(unn + ubb)

∂s̃
− 1

2

∂(u2
n + u2

b)t

∂s̃

]
. (26)
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2.5 Vortex-induced lift

In the phenomenological wake-oscillator model of Facchinetti et al. [2004], the lift in-
duced by vortices is perpendicular to the flow stream and initial rod axis. In our three-
dimensional simulations, we fix the direction of the lift u⊥0 as the normal to the plane
defined by the flow and initial rod configuration

u⊥0 = (troot × u0)/ ||troot × u0|| . (27)

The lift force can be expressed as

fVIV =
1

2
CLDρfU

2
0u

2
bu
⊥
0 , (28)

where the time-fluctuating lift coefficient is defined as [Facchinetti et al., 2004]

CL =
C0

L

2
q. (29)

The coefficient C0
L is the measured lift coefficient of a fixed cross-section during vortex

shedding, and q is the fluctuating variable that verifies the van der Pol equation

∂2q

∂t2
+ ε

[
2πStU0|ub|

D

]
(q2 − 1)

∂q

∂t
+

[
2πStU0|ub|

D

]2

q =
A

D

∂2w

∂t2
· u⊥0 , (30)

with U0ub being the binormal component of the upstream flow velocity, perpendicular
to the rod. We take the same coupling constants A = 12 and ε = 0.3 as in Facchinetti
et al. [2004], which give correct results even for slender flexible structures. Also, the
fluid-dynamic coefficients in our simulations are equal to CD = 1.2 and C0

L = 0.3, like in
Facchinetti et al. [2004] and our DNS results with Cadyf as well. Though, we take a
smaller Strouhal number St = 0.16 because we compute flows of lower Reynolds numbers.

We non-dimensionalise the expression of the vortex-induced lift

f̃VIV =
C0

LCY

2
u2
bqu

⊥
0 , (31)

and the van der Pol equation

∂2q

∂t̃2
+ εωf |ub| (q2 − 1)

∂q

∂t̃
+ ω2

f u
2
bq = ΓA

∂2w̃

∂t̃2
· u⊥0 , (32)

with
ωf = 2πSt

U0ts
D

= 2πUr. (33)
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In the rest of this document we will drop the notation (̃.) out of dimensionless quan-
tities.

2.6 Solving method

We perform simulations using a backward Euler scheme. Initially, we assign the node
positions of the mesh to the vector w|t=0,s = winit(s). In FEniCS we extract directly the
tangential vector of the initial configuration t0 of each element, then calculate the normal
vector from

ninit = (tinit × u)/ ||tinit × u|| . (34)

To calculate the initial value of the Darboux vector Ωinit and internal stress Fint,init, we
cross-multiply the vector tinit with the equations (4), (5), and (9)

Ωinit = tinit ×
∂tinit

∂s
+ (binit ·

∂ninit

∂s
)tinit, (35)

Fint,init = tinit ×
∂Minit

∂s
. (36)

The rod has zero initial velocity vinit = 0, and subjected initially, at each node, to a
random value of the lift fluctuation of order q ∼ 10−3.

We mesh the rod into uniform intervals. These are one-dimensional elements em-
bedded in a three-dimensional space. We choose P1 Lagrange elements, and solve the
nonlinear equations using the Newton method.

2.7 Verification

To verify the code, we consider the problem of a rod under a distributed load f̃ext = f̃0u0.
First we calculate the discretisation error εN between a fine grid with N elements and

a coarse one with N/2 elements [Oberkampf and Roy, 2010]

εN =
∣∣∣∣w0,N − w0,N/2

∣∣∣∣
2

=

 1

N/2

N/2∑
i=1

|w0,N(si)− w0,N/2(si)|2
1/2

, (37)

where the subscript (.).,N refers to the solution under a mesh of N elements, and

w0(si) = u0 ·w|si , si =
i

N/2
. (38)
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Figure 3: Code verification for the rod deflection under distributed load of small magni-
tude (N, f̃0 = 0.1) and a large magnitude (�, f̃0 = 10). (a) Discretisation error using
the norm L2. (b) Observed order of accuracy using the Richardson extrapolation. The
dashed lines refer to a quadratic variation.

We also calculate the observed order of accuracy p̂N [Oberkampf and Roy, 2010]

p̂N =
log(εN/2/εN)

log(2)
. (39)

The discretisation error is inversely proportional to the square of the element size,
and the observed order of accuracy is close to 2, as expected from the use of Lagrange
elements (see figure 3).

Now we fix the mesh (N = 10) and simulate the response of a rod under a dis-
tributed load between the instants t0 = 0 and tf = Nf∆t. We consider here the temporal
discretisation error of the tip displacement

ε∆t = ||w0,2∆t − w0,∆t||2 =

2∆t

Nf/2∑
i=1

|wtip
0,2∆t(tk)− wtip

0,∆t(tk)|2
1/2

, (40)

where the subscript (.).,∆t refers to the solution with a time step equal to ∆t, and

wtip
0 (tk) = u0 ·w|t=tk,s=1, tk = k2∆t. (41)
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Figure 4: Code verification for the distributed load of small magnitude (N, f̃0 = 0.1) and
a large magnitude (�, f̃0 = 10). (a) Discretisation error using the norm L2. (b) Observed
order of accuracy using the Richardson extrapolation. The dashed lines refer to a linear
variation.

Again, the observed order of accuracy p̂∆t is given by

p̂∆ =
log(ε∆/ε2∆t)

log(2)
. (42)

As seen in figure 4, the discretisation error varies linearly with the time step and the
observed order of accuracy is close to 1, which is consistent with the use of a first order
backward Euler scheme.

2.8 Validation

We simulate two benchmarks for the validation of static deformations. The first bench-
mark is the rod under a distributed load. For a range of loads f̃0u0, figure 5(a) shows
the numerical deflection of the rod at the tip

δFEniCS = w|s=1 · u (43)

compared with the theoretical formula δth derived by Rohde [1952], which is based on
series expansion. Taking the two leading terms in the approximation of δth, we found
that the numerical results match well with the theoretical solution even for considerable
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loads outside the linear regime δ ∝ f̃0 (|δth − δFEniCS| /δth < 1.4%).
The second benchmark is a rod under drag. We evaluate the reconfiguration number,

denoted R, defined as the total drag FD applied on the elastic rod scaled by the total
drag on a rigid one

R = FD

/(1

2
ρfDLCDU

2
0

)
. (44)

In our code, we extract R as follows

R =

∫ 1

0

u0 · fDds
/(1

2
ρfDLCDU

2
0

)
. (45)

Gosselin et al. [2010] proposed a theoretical model, supported with experiments, that
finds the reconfigured shape of a flexible thin, slender plate, and calculates the reconfig-
uration number for a wide range of Cauchy numbers. Since Kirchhoff equations govern
both slender beams and rods, we compare our numerical results with the theoretical
R − CY curve of Gosselin et al. [2010]. The comparison is shown in figure 5(b). Here
again, our simulations lay well on the theoretical model (|Rth −RFEniCS|/Rth < 3.1%).

2.9 Dynamic case

Leclercq and de Langre [2018] recorded the underwater motion of a thin plate fastened
with an actuator that oscillates for different sets of pulsations Ω and displacements A.
To transpose these experiments in our code, which fixes the clamped end, we make the
rod sway back and forth by applying an oscillating flow

U(t) = U0 sin (Ωt) , (46)

and choosing the corresponding velocity as

U0 = actuator displacement × actuator pulsation = AΩ. (47)

We consider low, moderate, and high pulsations ω = Ωts = 0.38, 1.07, 2.01, with
three different actuator displacements α = A/L = 0.27, 0.46, 0.65. We simulate the rod
deformation over four periods and save the deformation profiles during the last period.
We present experimental and numerical deformation profiles in figure 6. Results match
well with the measurements of Leclercq and de Langre [2018], especially for low and
moderate pulsations. The numerical deformation under high pulsation ω = 2.01 is also
comparable. There is a slight inclination in the cases α = 0.27, which is absent from the
measurements of Leclercq and de Langre [2018]. We presume it comes from experimental
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Figure 5: Comparison of the FEniCS solution with theoretical (a) maximum deflection
of a rod under a distributed load and (b) reconfiguration number of a rod under drag.
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Figure 6: Deformation profiles of the plate experiments (black) of Leclercq and de Langre
[2018] and rod simulations (purple) for the dimensionless flow pulsations ω = Ωts equal
to (a) 0.38, (b) 1.07, and (c) 2.01. In each case, the dimensionless actuator amplitude α =
A/L goes from 0.27 (left), to 0.46 (middle), and 0.65 (right). The numerical equivalent
case is a rod under an oscillating flow of upstream velocity in equation (46). The aspect
ratio of the plate and rod is Γ = 10. The dashed lines represent the trajectory of the
plate and rod tips.

features, due to important inertia effects that our model of hydrodynamic forces is unable
to capture (non-symmetry is also present in experiments for the low pulsation and short
displacement, and for high pulsation and moderate and high displacements, see top left,
bottom centre, and bottom right in figure 6). This minor discrepancy, nevertheless, does
not alter the overall comparison and the shapes remain fairly similar.

Table 1 summarises the values of the model parameters taken in the paper for rod
simulations in section 2.

name symbol value
drag coefficient CD 1.2

lift coefficient (fixed cylinder) C0
L 0.3

Strouhal number St 0.16
coupling parameters (A, ε) (12,0.3)
number of elements N 30

time step ∆t 5× 10−4

Table 1: Values of the parameters used in the paper.
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