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S1. DETAILS OF NUMERICAL METHODS

In this section, we describe the schemes of the numerical code that was used to solve the two-component flow
over and inside the textured surfaces. For momentum convection, a second-order central scheme was used, whereas
a third-order Runge-Kutta scheme was used for time integration [1]. The equation for the pressure was solved with
a fast Fourier transform (FFT) solver (FFTW) and handling domain decomposition with the 2DECOMP&FFT
library. To describe solids, we used a grid-aligned immersed-boundary method (IBM) [2]. With this method, the
edge of the solid is located at the edge of the cells. For a staggered grid, this means that the top of the solid ridges
are at the location of the wall-normal velocity nodes.

To impose a contact angle at the liquid-liquid-solid contact line, we specified the height function of the first ghost
layer [3]. Since the IBM is grid-aligned, the implementation of the contact angle is the same on an the immersed
boundaries and the domain boundaries. We used a dynamic model of the contact angle based on hydrodynamic
theory [4] – adapted to VOF [5] – , together with a no-slip velocity condition. As shown in [5], the dynamic contact
angle also improves grid independence. The method is explained further in sec. S1 A. It should be noted that the
ridge corners’ ghost cells were set to always be interface cells, and that the contact angle was imposed when the
interface moved to adjacent cells. Depinning occured for the higher Weber numbers.

The turbulent flow was validated by comparing the mean flow and the r.m.s. velocities for a full channel with
smooth walls to data from ref. [6]. The results are shown in fig. S1, having for the mean velocity a deviation of 0.8%
at the channel center. Shown are also statistics of a smooth open channel, with only small deviations for y+ < 100.
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FIG. S1: Simulation of a turbulent channel flow with smooth walls at Reτ ≈ 180, with mean velocity (a), r.m.s. ve-
locities (b), and Reynolds shear stress (c). The spanwise velocity r.m.s. value is represented by w+

rms for convenience,
but elsewhere w refers to the groove width. —— PARIS; — · — PARIS open channel; — — — Lee & Moser (2015)
[6]

The description of the streamwise liquid filled grooves was validated against the analytical expressions of
Schönecker et al. [7] for the slip length in a laminar flow. These expressions have recently also been used as a
reference for turbulent data of LIS simulations [8]. For these tests, we use a computational box corresponding to a
unit cell of the surface, with height three times the height of the groove. On the top boundary, a constant shear
was applied in the streamwise direction. A similar setup was recently used to investigate the robustness of LIS
with spanwise grooves [9]. Having 50 cells in the grooves, the errors were less than 4% for µi/µ∞ = 0.5, 1 and 2,
see fig. S2.

A grid refinement study was also performed for µi/µ∞ = 1, We = 100 and θ = 45°, where another grid with
(Nx, Ny, Nz) = (384, 960, 1536) was used, increasing the total number of grid cells by a factor of 3.4. This gave a
change of the friction coefficient by 0.76%. Plots are shown in fig. S3.
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FIG. S2: Comparison of slip length with the expressions of Schönecker et al. (2014). Ny refers to the total number
of grid cells in the wall-normal direction, with Ny/3 = 50 in the groove.
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FIG. S3: Grid refinement study: —— regular grid; — — — refined grid. The spanwise velocity r.m.s. value is
represented by w+

rms for convenience.

A. Dynamic contact angle

Following ref. [5], the contact angle can be found from the equation

G∗(θnum) = G∗(θstat) + Ca ln

(
∆/2

λ

)
, (S1)

where θnum is the numerically imposed contact angle, θstat is the static angle, Ca = Ucl
√
µiµ∞/γ, with contact

line velocity Ucl, λ is a microscopic length scale corresponding to an effective slip length of the contact line, here
taken to be constant, and ∆ is the wall-normal cell height. The angle θstat is in this manuscript denoted only θ for
simplicity. The contact line velocity is measured half a cell above the wall. The function G∗(θ) is a monotonically
increasing function. It is defined as G∗(θ) =

√
qG(θ), where q = µ∞/µi and G(θ) is the original function derived

by ref. [10], with the extra factor for increased symmetry,

G∗(θ) =

∫ θ

0

f∗−1(θ′, q)dθ′, (S2)

with

f∗−1(θ, q) =
q0.5(θ2 − sin2 θ)[(π − θ) + sin θ cos θ] + q−0.5((π − θ)2 − sin2 θ)[θ − sin θ cos θ]

2 sin θ[(2− q − q−1) sin2 θ + qθ2 + q−1(π − θ)2 + 2θ(π − θ)]
. (S3)

When written in this form, it is apparent that f∗(θ, q) = f∗(π − θ, q−1), which is a necessary requirement, since
eq. (S1) should be independent of which of the two components we consider. This is identical to the hydrodynamic
theory of an apparent angle model suggested in ref. [10], where θnum is the apparent angle. Legendre and Maglio [5]
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FIG. S4: Radius at wall (y = 0) of droplet spreading from 90° to 60° (a), and contracting from 90° to 120° (b), for
three different wall-normal cell sizes: —— Ny = 32; — — — Ny = 64; — · — Ny = 128, in blue. The viscosity

ratios are 0.5 and 2, with the faster spread/contraction for the case with surrounding fluid of lower viscosity. Data
from a droplet on an immersed boundary are also shown, using the intermediate resolution (red, — — —).

has suggested that λ should be on the order of the the physical slip length (typically on the order of 1 nm), and
may or may not be used in combination with a numerically applied slip length. We use a no-slip condition, with a
numerical value of λ = 2 · 10−7h, that with h ≈ 0.5 cm attains a realistic value. The full equation (S1) was solved
by the Newton’s method, and f∗−1(θ,N) was integrated with the trapezoidal rule. For numerical reasons, the value
has been limited to 30° ≤ θnum ≤ 150°.

We evaluated the grid-independence of the contact line model by looking at droplet spreading for three different
cell sizes. A three dimensional half-sphere droplet of radius Rinit = 0.5 was placed in a box of size (Lx, Ly, Lz) =
(2, 1, 2), with periodic boundary conditions in the x- and z-directions, and no-slip and shear-free boundary conditions
in the negative and positive y-direction, respectively. The initial radius sets the length scale of the problem. The
contact angle was initially 90°, when the static contact was set to θstat = 60°, so that the droplet started to spread.
The droplet had a density ρ = 1, viscosity µ = 0.25 and surface tension γ = 7.5. Using the density and the viscosity
we can define a time scale τ = ρR2

init/µ. The surrounding fluid had the same density, and the viscosity ratio was
changed by varying the viscosity of the surrounding fluid. Viscosity ratios of both 0.5 and 2 were tested, to span
the range of this study. The number of cells of the wall parallel directions were Nx = 64 and Nz = 64, and the
number of cells of the wall-normal direction was varied between Ny = 32, Ny = 64 and Ny = 128. The microscopic
length scale was set to λ = 2 · 10−7. Resulting spreading radii are shown in fig. S4a. The differences between the
curves are a few percentage, considered small enough for this study. Corresponding droplet contraction tests, with
contraction from 90° to 120°, are shown in fig. S4b. The tests using the intermediate resolution were also repeated
on an immersed boundary by extending the domain in the y-direction below the droplet by ∆Ly = 0.5 and adding
a solid slab there. The curves are hardly distinguishable between the two setups, as shown in fig. S4. The fluid
parameters and the dynamic contact angle model are the same as those used by Legendre & Maglio [5] (Dyn2) for
the spreading case, except for the viscosity ratio (there equal to 1) and a slightly different value of λ. Their results
agree well with those shown here.

S2. TURBULENCE STATISTICS

In this section, we show the turbulent statistics corresponding to the simulations We = {100, 150, 200} and
viscosity ratios µi/µ∞ = {0.5, 1, 2}. Mean velocity profiles are plotted in fig. S5a in wall units and fig. S5b in outer
units. As can be seen from the plot in wall units, the centerline velocity is increased by the LIS for low We. This
is related to the drag reduction achieved at these We, whereas the opposite occurs for the cases of drag increase
[11]. A reduction of the centerline velocity is followed by a decrease in the streamwise r.m.s. component, and an
increase of the wall-normal and the spanwise fluctuations, shown in fig. S5c. Over all, drag increase results in
an increased isotropy of the velocity fluctuations. Increased wall-normal velocity fluctuations at the surface has a
strong connection to the increase in drag [12, 13]. It implies stronger flow ejections, caused by the roughness the
waves impose.

The pressure r.m.s. profiles are shown in fig. S5d. Outside the grooves, the profiles for We = 100 and We = 150
are similar to the smooth wall profile, but are higher inside the grooves. For We = 200, when there are large waves,
the pressure fluctuations are increased also outside the grooves. This could be due to the increased roughness, but
also due to formation of droplets.

In the streamwise r.m.s. component, fig. S5c, there is a peak at y = 0, but not for the spanwise nor for the
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wall-normal. This can be related to the dispersive stresses from the solid structures, which are the r.m.s. of the
roughness-coherent velocity, uRC. Due to the symmetry in the streamwise direction, the roughness-coherent velocity
is the velocity field averaged in the streamwise direction and time. A peak is then created because the streamwise
velocity component on average is larger over the interface at the grooves than over the ridges. The peak height differs
between the viscosity ratios, but not so much between the different Weber numbers. This reflects the behaviour of
the mean velocity at the interface, fig. S5a for small y+, as well as the slip length, fig. 3b. It was seen that both
the spanwise and wall-normal roughness-coherent components were close to zero. The streamwise part is shown in
fig. S6 for We = 100.
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FIG. S5: Mean velocity profiles in wall units (a), and outer units (b) together with r.m.s. velocities (c) and
r.m.s. pressure (d). The grey area represent the grooves. Colours represent different We as in fig. 3 (We = 100-
blue, We = 150-red and We = 200-yellow), and the different lines represent different viscosity ratios, µi/µ∞ = 0.5
(— — —), µi/µ∞ = 1 (——) and µi/µ∞ = 2 (— · —). Also shown are statistics for a smooth wall (· · · · · ·). The
spanwise velocity r.m.s. value is represented by w+

rms for convenience, but elsewhere w refers to the groove width.

.

y+

-20 -10 0 10 20 30

u
+ R
C

;r
m

s

0

0.5

1

1.5

2

FIG. S6: Streamwise dispersive stress for We = 100, θ = 45° and µi/µ∞ = 0.5 (— — —), µi/µ∞ = 1 (——) and
µi/µ∞ = 2 (— · —).
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S3. THE MILES INSTABILITY ON GROOVES

A. Governing equations

In this section, we look at the governing equations for the Miles instability. We start from the equations for a
infinitesimal disturbance on a baseflow U = U(y) [14],

∂u

∂t
+ U

∂u

∂x
+ vU ′= −1

ρ

∂p

∂x
, (S4)

∂v

∂t
+ U

∂v

∂x
= −1

ρ

∂p

∂y
, (S5)

∂w

∂t
+ U

∂w

∂x
= −1

ρ

∂p

∂z
, (S6)

and

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (S7)

where ′ denotes a derivative in the y-direction. The spanwise velocity component is here represented by w for
convenience, which elsewhere refer to the groove width. Eliminating p gives Rayleigh’s equation for v (inviscid
Orr-Sommerfeld equation), [(

∂

∂t
+ U

∂

∂x

)
∇2 − U ′′ ∂

∂x

]
v = 0, (S8)

with p given by

1

ρ

[
∂2

∂x2
+

∂2

∂z2

]
p =

∂2v

∂t∂y
+ U

∂2v

∂x∂y
− U ′ ∂v

∂x
. (S9)

We further assume an interface shape of a wave travelling in the streamwise direction,

η = Aeikx(x−ct) cos(kzz) = Aekxciteikx(x−crt) cos(kzz) = a(t)eikx(x−crt) cos(kzz), (S10)

where η is the location of the interface, A is the wave amplitude, kx is the streamwise wavenumber, kz is the
spanwise wavenumber and c = cr + ici. Henceforth, we’ll use the notation k =

√
k2x + k2z . The curvature of the

interface gives rise to a pressure difference over the surface of (going from negative to positive y),

∆pcap = γ

(
∂2

∂x2
+

∂2

∂z2

)
η = −γk2η. (S11)

The perturbation must die out at infinity,

v → 0 as y →∞. (S12)

In addition to this, fluid parcels on the interface must remain on the interface, (so that the interface remains a
streamline) [15],

∂η

∂t
+ U

∂η

∂x
= v =⇒ v

U − c
= ikxη on y = η ≈ 0. (S13)

Returning now to Rayleigh’s equation, eq. (S8), with (x, z, t)-dependence of v as η,

(U − c)∂
2v

∂y2
− [k2(U − c) + U ′′]v = 0. (S14)

From eq. (S9), with (x, z, t)-dependence of p as η,

p

ρ
= −ikx

k2

[
(U − c)∂v

∂y
− U ′v

]
. (S15)
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B. Non-dimensionalisation

In order to facilitate the derivations, we introduce the transform,

ξ = ky, U − c = U1ũ(ξ) and v = ikxU1ṽ(ξ)η, (S16)

where U1 is an arbitrary reference velocity. From the kinematics of the interface, eq. (S13), it follows that

ṽ0 = ũ0, (S17)

where a subscript 0 denote the location of the interface, y ≈ 0. The Rayleigh equation becomes

ṽ′′ũ− [ũ+ ũ′′]ṽ = 0. (S18)

The equation for the pressure, eq. (S15), results in

p = ρU2
1

k2x
k
η(ũṽ′ − ũ′ṽ). (S19)

The pressure just above the interface can be written as

p+0 = (α+ iβ)ρU2
1

k2x
k
η. (S20)

By comparing these two expressions,

α+ iβ = (ũ0ṽ
′
0 − ũ′0ṽ0) = ũ0 (ṽ′0 − ũ′0) , (S21)

where the last equality comes from eq. (S17). Following ref. [16], ũ is assumed to be approximately real and thus
β must come from the imaginary part of ũ0ṽ

′
0, whereas α is the remaining part.

C. Derivation of α

We here derive an expression for α, which is the real part of eq. (S21),

α = <(ũ0ṽ
′
0)− ũ0ũ′0. (S22)

We use an approximate solution suggested by Miles [16], ṽ = ũ(ξ)e−ξ (satisfying the boundary conditions), instead
of solving the full equation. This approximate solution gives

α = −ũ20 − ũ0ũ′0 =
1

U2
1

(
−(U0 − c)2 −

U ′0
k

(U0 − c)
)
. (S23)

Now, α can be decomposed into two parts, α = α1 + α2, where α1 = −c2/U2
1 and α2 is the remaining part. We

assume that U0 can be neglected in comparison to c. The inverse of the wave number has an upper bound,

1

k
=

1√
k2x + k2z

<
1

kz
=
λz
2π

<
2w

2π
, (S24)

since kx > 0 and λz must be smaller than two groove widths. Therefore,

U ′0
k

=
1

kh

Re2τ
Reb

Ub =
11

kh
Ub <

11

π

w

h
Ub, (S25)

for Reτ = 180. For this Reynolds number and groove width w+ = 18, the limiting value is 5.5 in wall units. The
shear could hence potentially influence the phase speed with up to this magnitude, however we consider it here to
be of secondary importance.

We now look at the flow inside the groove. The wall-normal velocity must be zero at the bottom at the groove,

ṽ = 0 at ξ = −kw. (S26)

It can also be noticed that kw > kzw ≤ 2π/(2w)w = π, and e−π = 0.043 � 1. Hence, if the same assumption
of exponential decrease of ṽ is made inside the groove, it is reasonable. We therefore assume ṽ = ũeξ for y < 0.
Neglecting also the mean velocity and its derivative inside the groove, the pressure is

p− = ρ
k2x
k
c2ηeky, y < 0, (S27)

as given by eq. (S9) or eq. (S19). This is the pressure corresponding to α1.
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D. Phase speed and minimum phase speed

The difference between the pressure above (eq. S20) and below (eq. S27) the interface must be balanced by the
capillary pressure (eq. S11),

∆p = p0 − p−(y = 0) = (α+ iβ)ρU2
1

k2x
k
η − ρk

2
x

k
c2η = ∆pcap = −γk2η. (S28)

Solving for c and including the expression for α1,

2c2 =
γ

ρ

k3

k2x
+ (α2 + iβ)U2

1 =⇒ c = cw

(
1 +

1

4
(α2 + iβ)

U2
1

c2w
+ . . .

)
, (S29)

where cw =

√
γ

2ρ

k3

k2x
is the unforced phase speed neglecting any contributions from α2 and β and the dots denote

higher order terms.
It is possible to find the kx for which cw assumes a minimum value by evaluating dcw/dkx = 0. The minimum

value is, for kz = 2π/(2w),

cw,min =

√
γ

ρ

33/2

4
kz =

√
γ

ρ

33/2

4

π

w
=⇒ c+w,min =

√
1

We+w+

33/2π

4
≈
√

π

We+w+
. (S30)

E. Derivation of β

In this section, we find an expression for β. Returning to eq. (S18), dividing by ũ, multiplying by the complex
conjugate of ṽ, namely ṽ∗, integrating from ξ = ξ0 to ξ = ∞, integrating ṽ′′ṽ∗ by parts, and using the boundary
conditions above (eqs. S12 and S17),∫ ∞

ξ0

{|ṽ′|2 + [1 + ũ′′/ũ]|ṽ|2}dξ = [ṽ∗ṽ′]∞ξ0 = −ũ0ṽ′0. (S31)

Hence, the imaginary part of eq. (S21) is

β = =(ũ0ṽ
′
0) = −=

(∫ ∞
ξ0

(ũ′′/ũ)|ṽ|2dξ

)
. (S32)

By calculus of residues [16], this expression can be evaluated to

β = −π|ṽc|2
ũ′′c
ũ′c

= −π
∣∣∣∣ vc
kxηU1

∣∣∣∣2 1

k

U ′′c
U ′c

, (S33)

where the subscript c denotes values at the location where ũ = 0, ξ = ξc. To find an expression for ṽc, eq. (S18)
can be re-written as

(ũṽ′ − ũ′ṽ)′ = ũṽ. (S34)

Integrating between ξ = ξc and ξ =∞ gives,

ṽc =
1

ũ′c

∫ ∞
ξc

ũṽdξ. (S35)

We now use the same approximate solution of ṽ as above. This approximation gives

β = −π ũ
′′
c

ũ′3c

[∫ ∞
ξc

e−ξũ2dξ

]2
. (S36)

The solution to the full equation has been given by Conte & Miles [17]. Assuming a logarithmic profile, U =
uτ/κ log(y/z0) =⇒ ũ = log(ξ/ξc). We have here set the reference velocity, U1 = uτ/κ, where κ is the von Kármán
constant. With eq. (S36),

β = πξc

[∫ ∞
ξc

e−ξ log(ξ/ξc)
2dξ

]2
. (S37)
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F. Condition for wave growth

To the first order, the imaginary wave speed corresponds to

ci = cw
1

4
β
U2
1

c2w
, (S38)

giving wave growth when non-zero. The relation for β, eq. (S37), can be computed and is plotted in fig. S7. There
is a sharp decrease in β at about ξc ≈ 1. This means that in order to have amplitude growth,

ξc = kyc . 1 =⇒ yc .
1

k
<
w

π
, (S39)

where we use the upper bound of 1/k as given by eq. (S24).
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FIG. S7: Plot of β verses ξc = kyc, with (a) linear and (b) logarithmic vertical axis.

S4. SPACE-TIME CORRELATIONS

Space-time correlations are shown in fig. S8 for µi/µ∞ = 1 and We = 100 and 200.
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region with highest correlation corresponds to the dominating phase speed, marked by a black line.
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