Movie Captions

- Movie 1 Exemplary simulation run at = 30, domain size 20×20 and spatial resolution of 1/8. The evaporation rate at the top boundary is uniform across the whole width of the domain.
- Movie 2 Exemplary simulation run at = 100, domain size 20×20 and spatial resolution of 1/8. The evaporation rate at the top boundary is uniform across the whole width of the domain.
- Movie 3 Exemplary simulation run at = 1000, domain size 10×5 and spatial resolution of 1/80. The evaporation rate at the top boundary is uniform across the whole width of the domain.
- Movie 4 Exemplary simulation run at = 100, domain size 40×40 and spatial resolution of 1/8. The evaporation rate at the top boundary is modulated with a modulation wavenumber of $k_m a th rmm = 0.63$ and a modulation amplitude of $A_m = 1.0$.
- Movie 5 Exemplary simulation run at = 10, domain size 40×40 and spatial resolution of 1/8. The evaporation rate at the top boundary is modulated with a modulation wavenumber of $k_m athrmm = 1.27$ and a modulation amplitude of $A_m = 1.0$.
- Movie 6 Exemplary simulation run at = 10, domain size 40×40 and spatial resolution of 1/8. The evaporation rate at the top boundary is modulated with a modulation wavenumber of $k_m athrmm = 1.88$ and a modulation amplitude of $A_m = 1.0$.
- Movie7 Exemplary simulation run at = 10, domain size 40×40 and spatial resolution of 1/8. The evaporation rate at the top boundary is modulated with a modulation wavenumber of $k_m athrmm = 2.51$ and a modulation amplitude of $A_m = 1.0$.