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In this supplementary material, we describe the linear stability analysis carried out to inves-

tigate the growth of the Rayleigh-Plateau-like (RP) instability on angularly patterned cylinders.

When the cylinder rotates so rapidly that gravity may be neglected, a gravitational timescale is no

longer appropriate. The evolution equation for the film thickness (main text Eqn. (2.18)) may be

rescaled using a capillary timescale to yield

(1 + εh+ εB)
∂h

∂t
= −ε3∇̃ ·

(
h3

3

[
We∇̃(h+B) + ∇̃

(
h+B + ∇̃2(h+B)

)])
, (0.1)

where Eqn. (0.1) was provided as Eqn. (3.1) in the main text. When the topography B = 0, Eqn.

(0.1) reduces to the evolution equation in the limit of a rapidly rotating cylinder found in Evans

et al. (2005).

1. Linear stability analysis

A linear stability analysis (LSA) may be used to examine the growth of small-amplitude

disturbances in the coating thickness on rapidly rotating, topographically patterned cylinders. As

a continuous function for the topography B(θ, z) may be represented by a Fourier series, we carry

out the LSA using a screw-shaped topography for simplicity,

B(θ, z) = β cos (kθθ + kzz) , (1.1)

where β is the amplitude of the topography, and kθ and kz are wavenumbers of the topography in

the axial and angular directions, respectively. We note that Eqn. (1.1) comprises an even Fourier

mode (cosines) and that the LSA will yield a similar result for odd Fourier modes (sines). Due to

periodicity of the topography in the θ-direction, kθ is restricted to integer values.
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The film thickness is then decomposed into a base state hb = 1 disturbed by a sinusoidal

disturbance of an initially small amplitude α with a time-dependent amplitude of αh(t),

h(θ, t) = 1 + αh(t) cos (lθθ + lzz) +O
(
α2
)
. (1.2)

The frozen-base-state assumption has been invoked, where the base state hb is assumed to evolve

slowly compared to the disturbance. The wavenumbers of the disturbance lθ and lz do not need

to be identical to the topography wavenumber. We assume that the topography amplitude β is of

O (α) for the purposes of the LSA.

A non-autonomous ordinary differential equation describing h(t) may be obtained after sub-

stituting Eqns. (1.1) and (1.2) into Eqn. (0.1) and linearizing with respect to α,

∂h(t)

∂t
= h(t)

ε3

3(1 + ε)

(
(1 +We)l2 − l4

)
+ δkθlθδkzlz

β

α

ε3

3(1 + ε)

(
(1 +We)l2 − l4

)
, (1.3)

where δij is the Kronecker delta. The lumped wavenumber l is expressed as l2 = l2θ+l
2
z. The product

of the two Kronecker deltas results from the inner product of the disturbance and the topography,

δkθlθδkzlz =

∫ 2π

0

∫ 2π

0

cos (kθθ + kzz) cos (lθθ + lzz) dθdz, (1.4)

and is zero when these Fourier modes are orthogonal (kθ 6= lθ or kz 6= lz). Eqn. (1.3) is solved using

the integrating-factor method to yield

h(t) = eωt + δkθlθδkzlz
β

α

(
eωt − 1

)
, (1.5)

where ω is a growth rate given by

ω =
ε3

3(1 + ε)

(
(1 +We)l2 − l4

)
, (1.6)

and β/α is the ratio of the topography amplitude to the disturbance amplitude. The first term on the

right-hand side of Eqn. (1.5) describes the effects of centrifugal and capillary forces on the coating

in the absence of topography (β = 0), while the second term captures centrifugal and capillary

effects induced by the topography. For an unpatterned cylinder (β = 0) or a disturbance orthogonal

to the topography (δkθlθ = 0 or δkzlz = 0), the results of the LSA reduce to those obtained in Evans

et al. (2005).
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When the topography interacts with the disturbance (δkθlθ 6= 0 and δkzlz 6= 0), the behavior

of the coating is controlled by the sign of ω and the ratio of the topography amplitude to the dis-

turbance amplitude (β/α). Centrifugal forces dominate when ω > 0, causing liquid to accumulate

over pattern crests (h(t) > 0). Surface-tension forces dominate when ω < 0, causing liquid to

accumulate in pattern troughs (h(t) < 0). When ω < 0, Eqn. (1.5) predicts that the disturbance am-

plitude should decay exponentially toward −β/α. For a fixed wavenumbers lθ and lz, the critical

Weber number separating these regimes (ω(We) = 0) can be found using Eqn. (3.13) in the main

text, provided again below,

Wec = l2θ + l2z − 1. (1.7)

To examine the effects of ω and of β/α on the evolution of disturbances, simulations of

Eqn. (0.1) have been carried out with an initial thickness

h0 = hb + α cos (lθθ + lzz) , (1.8)

on an axially-patterned cylinder (kθ = 0 and kz = 3). The amplitude h(t) is calculated from

simulation results by solving Eqn. (1.2),

h(t) =
h(θ0, z0, t)− 1

α cos (lθθ0 + lzz0)
, (1.9)

where h(θ0, z0, t) is the film thickness obtained from simulations at a fixed angular coordinate

θ0 and axial coordinate z0. The coating is disturbed by a sinusoidal disturbance (Eqn. (1.2)) of

wavenumbers lθ = 0 and lz = 3 with an initial amplitude of α = 1 × 10−3. The sign of the growth

rate ω is varied by changing the Weber number We.

Disturbance amplitudes calculated from simulations (Eqn. (1.9)) on axially patterned cylin-

ders (kθ = 0 and kz = 3) are compared to the value predicted by the LSA (Eqn. (1.5)) over time for

varying ω and varying amplitude ratios β/α in Fig. 1. Solid symbols represent the results calcu-

lated from simulations (Eqn. (1.9)) while the solid lines are the results predicted using Eqn. (1.5).

The dashed line denoting h(t) = 1 visually separates results for ω > 0, which fall above the dashed

line, and ω < 0, which fall below the dashed line. Arrows mark the direction of increasing β/α.

Good agreement is observed between the disturbance amplitudes calculated from simulations
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FIG. 1. Simulation results (filled symbols) and LSA predictions (solid lines) for the disturbance amplitude
h(t). The growth rates are ω = ±2.667 × 10−5 for We = 20 and We = 10, respectively. Initial
disturbance amplitudes were fixed at α = 1× 10−3 with amplitude ratios β/α of 1 and 10. A horizontal
dashed line marks h(t) = 1—results for We > Wec and We < Wec are found above and below this
dashed line, respectively. Arrows mark the direction of increasing β/α.

(symbols) and predicted from the LSA (solid lines), as shown in Fig. 1. For both ω > 0 and

ω < 0, an increase in β/α speeds up the evolution of the disturbance as h(t) is larger at earlier

times (Eqn. (1.5)). At later times in the simulations for ω > 0, the disturbances have grown large

enough so that nonlinear effects begin to slow their growth, leading to amplitudes smaller than

those predicted by LSA. At times later than those shown in Fig. 1, the disturbance amplitudes with

ω < 0 decay exponentially toward −β/α as is predicted by Eqn. (1.5). When lz 6= kz or lθ 6= kθ,

the LSA results reduce to those obtained on an unpatterned cylinder (Eqn. (1.5)) where growth

or decay of disturbances is controlled by the sign and magnitude of the growth rate. The growth

or decay of these disturbances (lz 6= kz or lθ 6= kθ) may compete with the pooling of liquid over

crests or troughs induced by the topography (lz = kz and lθ = kθ), and evolution of the coating may

depend on nonlinear effects that become important at later times.

2. RP wavelength on angularly patterned cylinders

An example of a disturbance orthogonal to the topography (kθ 6= lθ and/or kz 6= lz) is an axial

disturbance (lθ = 0 and lz 6= 0) on an angularly patterned cylinder (kθ 6= 0 and kz = 0). For short

times where linearization is valid, disturbances will either grow or decay based on their proximity
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to the cutoff wavenumber lc, where ω(k) = 0 (see Eqn. (1.6),

lc =
√
l2θ,c + l2z,c =

√
We+ 1. (2.1)

Disturbances with l > lc will grow due to centrifugal forces while those with l < lc will be leveled

by surface-tension forces. Furthermore, the fastest-growing wavenumbers lθ,m and lz,m are the

wavenumbers at which the growth rate ω is maximized,

l2θ,m + l2z,m =
We+ 1

2
. (2.2)

Due to periodicity in the θ direction, lθ,m is restricted to the closest integer wavenumber with

the largest growth rate (Eqn. (1.6)). The wavelengths of the fastest-growing disturbances with

wavenumbers lθ,m and lz,m are

λi,m =
2π

li,m
(i = θ, z) . (2.3)

For short times in simulations when the linearization of Eqn. (0.1) is valid, the spacings between

droplets observed in the θ and z directions are expected to be the wavelengths of the fastest-growing

disturbances.

In Evans et al. (2005) and Li & Kumar (2018), the dimensionless spacing between rings

that form on rapidly rotating, unpatterned cylinders was assumed to be equal to the wavelength

of the fastest-growing axial disturbance when angular thickness variations were neglected. On an

angularly patterned cylinder, the growth of axial disturbances is predicted to occur independent of

the angular patterning by the LSA results (Eqn. (1.5) for kz = 0 6= lz). After assuming angular

thickness variations are negligible (lθ,m = 0 in Eqn. (2.2)) (Evans et al., 2005; Li & Kumar, 2018),

the expression for the dimensionless wavelength of the Rayleigh-Plateau-like (RP) disturbance

λ∗
RP on an angularly patterned cylinder is obtained from Eqns. (2.2) and (2.3),

λ∗
RP =

2π
√
2√

1 +We
. (2.4)

This expression, also shown in the main text as Eqn. (3.2), is identical to the expression for the

dimensionless wavelength of the RP disturbance on unpatterned cylinders. The growth rate ωm of

the disturbance with the wavelength given in Eqn. (2.4) is found by evaluating Eqn. (1.6) for lθ = 0
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and lz =
√

0.5 (1 +We),

ωm =
ε3 (1 +We)

2

12 (1 + ε)
. (2.5)

This is provided in the main text as Eqn. (3.3).
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