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A Derivation of the coupled equations of motion via the Minimal

Action’s Principle

The Hamilton’s Principle for an open system at constant temperature, is given by

0S5 +6W +46C=0.

Expressions for the variation of each term are given in the following subsections.

Variation of the kinetic energy of the fluid
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In Cartesian coordinates, fluid velocity vector vgjiq is given as follows:

It is given by
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and, subsequently, fluid velocity vector is simplified to

fluid ~ ’81& Uazvv

and, accordingly, the magnitude of v4:q is given by
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Afterwards, |vfiyiq| from (A.6) is incorporated into the Kinetic Energy in (A.3). The variation of the
kinetic energy of the fluid leads to the following expression:
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Variation of the kinetic energy of the tube

It is given by
1
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In Cartesian coordinates,
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and the magnitude of tube velocity vector is given by
ou\?
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Subsequently, substituting the magnitude of tube velocity from (A.10) into the kinetic energy of tube
in (A.9). The computation of the variation leads to the following expression:
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Variation of the potential energy of the tube

It is given by the following expression:
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and its variation is computed as follows:
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Variation of the external work

It is given by the expression previously stated in Section 2 of the main article, as
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Variation of the constrains

The conservation of fluid mass has been incorporated as a restriction in the following form:
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From the properties of the differential operators, it is followed that
V - Arfluid = uid * VA + AV - raguia (A.16)
and, by a rearrangement, the following expression is obtained:

AV *TAuid = V- Arﬂuid — I'fuid - VA . (Al?)

Substituting (A.17) into (A.15), leads to

/ AV - rguqdV = / V - ArgyiqdV — / Ifuid - VAdV . (A.18)
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By the divergence theorem, the following expression is obtained:
/ V - Arguiq dV = / Arguiq -ndS , (A.19)
1% s

which is incorporated in the constrain, as follows:

/ AV - rﬁuiddv = / AI‘ﬂuid -ndS — / T'fAuid VAdV . (A.QO)
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By considering that the fluid motion only occurs along the axial direction of the tube as stated in the
main article, is given as below:
Tfluid = Ttube + Zfluid tan » (A21)

which corresponds to the statement in the body of the article, as

VAuid = Viube T ¥ Qtan - (A22)

Within the limit of small deformation, the differential operators are simplified to the following expres-
sions:
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I'fluid * €z = Zfluid > (A.24)
Tfuid * VA = 2f1uid (€5 - VA) . (A.25)

Afterwards, the considerations in (A.20), (A.23) and (A.24) are incorporated in the constraint in (A.15),
and the variation is computed, leading to the following result:
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Finally, the expressions in (A.7), (A.11), (A.13), (A.14) and (A.26) are incorporated in the Hamilton’s
principle stated in (A.1), the following expression is obtained:
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where the sub-indexes in volume regions Vi, V5 and the surfaces Sy, Sy where omitted for the sake of
simplicity in the expression; however, each term in the integrals should be performed on its corresponding
region. Equation (A.27) leads to one equation of motion for the variation of each of the field variables
(which are u and zfyiq)-

For the variation of tube displacement, du, we obtain the following expression:
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For the variation of fluid displacement ¢z 44, we obtain the following expression:
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Integrals in (A.29) are applied on different integration regions: the first one is a volume integral,
whereas the second one is a surface integral. Therefore, each integral vanishes independently, leading to
the following expression for the volume integral:
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and this is the expression given for the surface integral:

/ ((=pl+7) - n+An)-e.0zf4iqdS =0 . (A.31)
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From (A.31), we obtain the value of the Lagrangian multiplier A, as

An=(pl—-71)-n. (A.32)

Therefore, the physical meaning of the Lagrangian multiplier A is the net stress applied along the plane
in which fluid flow occurs. It is possible to see that the volume integral in §C in (A.26) incorporates a
force in the equation of motion, given by the spatial derivative of A, as follows:
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where the stress tensor of a Newtonian fluid and its divergence must be given in terms of the dynamic



coordinates (r',6’,2'), leading to the following expression:
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When the small deformation limit is considered, along with a tube radius much smaller than the radius
of curvature of the tube, and the angular dependence of the flow velocity is neglected, then the last three
terms in (A.34) are zero, which leads to the following approximated expression:

(A.35)
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and the prime notation in (A.35) omitted as in the rest of this section. Incorporating A from (A.32) into
(A.30), the following expression is obtained:
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B Analytical solution of flow velocity influenced by tube vibra-
tion

For the case of small flow velocity respect to the velocity of propagation of elastic waves along the tube,
the equations of motion are rewritten below:

0*u 0%u
EI@ + (pAy + ptAt)w =0, (B.1)
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where E corresponds to Young modulus of the tube, I is the second moment of inertia, which for a
cylindrical shell is given by

=7 (Ry-RY) (B.3)

where R, and R are the outer and inner radius, respectively.
Equation (B.1) is solved when initial and boundary conditions are given, and leads to a solution of the

form
N

u(z,t) = Z Ay sin(k,z — wpt) (B.4)

n=1

where A,, is the amplitude of each plane wave, k,, is the spatial modulation and w,, is the corresponding
frequency, which is obtained by the dispersion relation associated to (B.1), as
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Then, the solution wu(z,t) is incorporated in g(¢) and h(t). In the following treatment, the solution of
(B.2) for flow velocity is provided for arbitrary functions g(¢) and h(t).

Equation (B.2) is a linear non-homogeneous partial differential equation with time-dependent coeffi-
cients —particularly, pg(t)—. The non-homogeneous term is only dependent on time as well —particularly,
ph(t)—. Therefore, we write the general solution of such differential equation in the following form:

'U(T7 t) = vhomo(r» t) + Upart (t) 5 (B6)

where Vpomo(r,t) is the solution of the associated homogeneous differential equation, whereas vpq.(t) is
a particular solution of the inhomogeneous term. Equation for vpemo(r,t) is
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By performing separation of variables, vpomo(r,t) = R(r)T(t) and substituting in (B.7), we have
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where —i\ is the constant of separation, it has been expressed in such a way in order to simplify further
treatment. In all the integrals involved, we will omit the primed indexes for integration over time, for
the sake of simplicity during the derivation. Separation of variables allows one to solve two independent
ordinary differential equations from (B.8). First, the equation for T'(¢) results:

dT
a + (@A +g(t) T =0, (B.9)
whose solution is given by
T = Tye e Jio 904 (B.10)
The equation for R(r) is given by
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with the following solution:

R(r) = RiJo (, /”}f%) + RyYy (-, /i’\upr> . (B.12)

Incorporating expressions from (B.10) and (B.12) in vpeme and after renaming the constant coefficients,

the solution of (B.7) is given by
A A ; t
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Afterwards, differential equation for vy, (t) is

Vhomo (Ty t) =

10p
+ g(t)’l]part + ;5 —+ h(t) =0. (B14)
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Equation (B.14) is a first-order ordinary differential equation; hence, we rewrite (B.14) as a differential

form, as follows:
M(Upart7 t)dvpart + N(Uparta t)dt =0 ) (B15)



with

M(Upartat) =1 5 (B16)
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An exact differential form for the function F(vper,t) is given by
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with equal cross derivatives, as stated below:
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However, (B.16) is not an exact differential form, because the cross derivatives are unequal, as
oM
— =0 B.20
=0, (53.20)
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An integrating factor u(t) is incorporated in (B.16), to obtain the following exact differential form:
dF = p(t) [M(v,t)dv + N(v,t)dt] =0, (B.22)

where p(t) is given by
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= exp ( / g(t)dt) . (B.23)

The solution of the differential form is given by
F(v,t) = constant , (B.24)

where the partial derivatives of F'(v,t) correspond to
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By partial integration of (B.25) and (B.26), the solution of (B.14) is shown below:

1
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A rearrangement of terms allows one to obtain the following explicit expression for vpe¢, as
1
Vpart (t) = e~ 9t ( / Jotdt ( ap h(t)) dt> . (B.28)

The expressions for vpemoeq in (B.13) and vpe, in (B.28) are incorporated into (B.2), leading to

U(T’,t) — e_ftto g(t')dt’ (C’OJreiAtClJO( WT) +eii)\t02}/0 ( MPT>
H \/ H
t/ ” " 1
/ Jig ottt ( o +h<t’)) dt’) , (B.29)

where tg is an arbitrary lower time for integration. For practical purposes, we will compute such integrals
by considering ty = 0.

Equation (B.29) is not general in the sense that considers that a single value of A has been provided.
However, some boundary conditions require several values of the eigenvalue. Thus, a general solution
of (B.2) can be expressed as a linear combination of expressions like the one in (B.29). Moreover, the
eigenvalue A can spread any real value, i. e., A € (—00,00), so the linear combination is generalised to an
integral, as follows:
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where the term Cy has been omitted since it is incorporated in C()) as
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Equation (B.30) is capable to account for any boundary condition. Particularly, we study the classical
conditions of Hagen-Poiseuille flow, i. e., finite flow in the center of the tube, given by

=Gy . (B.31)
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v(r,t)

— finite , (B.32)
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and the no-slip condition at the tube walls, which is given by

v(r,t) =0. (B.33)

r=R

Incorporation of finite flow stated in (B.32) leads to the following result:
Cy=0, (B.34)

since the Neumann function diverges at r = 0. Besides, the no-slip condition stated in (B.33) is substituted
into (B.30), and leads to the following result:
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In order to solve (B.35) for the coefficients C()\), we rewrite the time-dependent integral in terms of
the Fourier identity, as follows:
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Substituting (B.36) into the no-slip condition in (B.33), we obtain the following expression:
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A rearrange of the integral on A in (B.37) leads to the following result:
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The integral kernel in (B.38) must vanish, leading to the following expression for Cy(\):
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Finally, by incorporating C1(A) in (B.39) and C3(\) in (B.34) in the general solution stated in (B.30),
the following result is obtained for the flow velocity with no-slip at the tube walls:
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C Details of the solution of fluid dynamics influenced by a tube
moving in a single vibration mode

Equation (B.40) allows one to solve fluid dynamics if the condition of tube motion is previously given and
computed in g(¢) and h(t), as defined in the body of article. Tube dynamics, as stated in (2.31) is solved
along with boundary conditions.

A specific experimental setting of the tube would determine the way in which edges are fixed in an
experiment (Arash & Wang 2012). Experimental literature on elastic nano-tubes shows three common
geometrical conditions for the tube edges (Krishnan et al. 1998), as shown below:

e Pinned edge. It means that the displacement of the tube edge is zero, and that there is no curvature at
that point. Physically, this implies that no elastic strain is imposed at the tube edge. Mathematically,
for a tube edge located at z = zg, this is written as:

9%u

=0 and @

=0. (C.1)

Z=Z0 Z=Z0

e Clamped edge. It means that the displacement of the tube edge is zero, and that the tube at that
point is constrained to be horizontal. Mathematically, for a tube edge located at z = zp, this is
written as:

ou
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e Free edge. It means that the displacement of the tube edge is not fixed, the only constrain is that
there is no curvature at that point and on its neighborhood. Mathematically, for a tube edge located
at z = zg, this is written in the following way:

2 3
e il (C.3)

For a finite-size tube, which has two edges, any combination of these three possibilities should be, in
principle, experimentally possible. This gives 6 sets of boundary conditions that discretise differently the
dispersion relation, namely, pinned-pinned, clamped-clamped, pinned-clamped, pinned-free and clamped-
free. Each of these sets imply four conditions on w and/or its spatial derivatives and leads to different
vibration modes.

Fourier transform of (2.31) leads to

A4 A
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where 4(z,w) denotes the Fourier transform of u(z,t).
The general solution of (C.4) is given by

— (pAs + prAnw*i =0, (C.4)

(z,w) = C1e™** 4 Coe™ ™ 4 C3er* + Cpe™* | (C.5)
where k is given by
A A 2 %
b — (W) , (C.6)

In order to determine the particular solution of (C.4) for each set of boundary conditions, (C.1)-(C.3) are
incorporated in the general solution in (C.5), leading to a 4 x 4 system of algebraic homogeneous equations
for C1, Cq, C3 and C4. A homogeneous system leads to non-trivial solutions only if the determinant of its
coefficients vanishes, as stated below:

Dpc =0, (C.7)

where the suffix BC accounts for each set of boundary conditions. For each case, the expression of the
determinant is given below:

e Pinned-pinned

1 1 1 1
2 1.2 2 2
Dep=| e e e Tw | =160 sin(kL)sinh(kE) . (C.8)

_k2€ikL _k.26—ikL k,2ekL k.Qe—kL

e Clamped-clamped

1 1 1 1
ik —ik k —k .
Dce = esz efz?kL kL kL | = 8ik?(cos(kL) cosh(kL) — 1) . (C.9)
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e Pinned-clamped

1 1 1 1
ik —ik k —k
Dpc = eikL e—ikL kL e—kL

7k2€ikL 7k267ikL k26k:L k2eka

= 8ik®(cosh(kL)sin(kL) — cos(kL)sinh(kL)) . (C.10)
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e Pinned-free

1 1 1 1
—k? —k? k2 k2
Dpr = _k2etkL  _p2,—tkL  L2gkL k2e—kL
_ik3eikl  p3e—ikL  L3okL  _}.3,—kL
= —8ik"(cosh(kL)sin(kL) — cos(kL)sinh(kL)) . (C.11)
e Clamped-free
1 1 1 1
ik —ik k —k .
Dpc = _k2ethL _p2e—ikL 2. kL p2,—kL | = —8lk6(005(kL) cosh(kL) +1) . (C.12)

_,L'k,3eikL Z'k.?)e—ikL k,BekL _k3e—kL

The condition for non-trivial solutions, as stated in (C.8)-(C.12), is only accomplished for certain values
of k, leading to discretised values k;,, which are summarized in table (1).

Table 1: Discretisation of k = k,, induced by the different sets of boundary conditions. Values shown for
k, are asymptotic approximated solutions for (C.8)-(C.12).

Set of boundary conditions knL

Pinned-pinned nmw
Clamped-clamped (n+1/2)7
Free-free (n+1/2)7
Pinned-clamped (n+1/4)7
Pinned-free (n+1/4)=w
Clamped-free (n—1/2)7

The discretisation of k = k,, implies also the discretisation of the frequency w = w,, since k and w are
related by (C.6).

After discretisation of k, and w,, each 4 x 4 system of equations is simplified to a 4 x 3 system of
equations in which one of the variables is left as a degree of freedom.

Such treatment leads to non-trivial solutions of the following form:

Un(2,w) = fn(2) (C1nd(w — wn) + D1,pd(w +wy)) (C.13)

where f,,(z) is a spatial function obtained for each set of B. C. By performing the inverse Fourier transform
of (C.13), the following expression is obtained for u,(z,t), as follows:

Un(2,t) = Up fr(2) sin(w,t + @) . (C.14)

The explicit expression for f,(z) for the different sets of boundary conditions is provided in the following
list.

e Pinned-pinned

fn(z) = Sin(knz) (015)
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Clamped-clamped

(—=1)™ — sinh(k,, L)
cosh(k, L)

fn(z) = sin(k, z) — sinh(k,z) + (cos(kpz) — cosh(k, 2)) (C.16)

Pinned-clamped
(=1)™ sinh(k,2)

fn(2) = sin(knz) — 75 sh(knL) (C.17)
e Pinned-free
Fu(2) = sin(knz) + (}Q)n m (C.18)
e Clamped-free
Fu(2) = sin(knz) — sinh(kyz) + 2 = SBRL) o)~ cosh(knz) (C.19)

cosh(k, L)

The solution uy(z,t) from (C.14) is incorporated into the Coriolis and pulling forces denoted by g(¢)
and h(t). The phase ¢ = 0 is considered for simplicity, leading to the following result:

2
g(t) = U% f” sin(2wt) (C.20)

2B 2
h(t) = UjsBw

cos(2wt) , (C.21)
where A and B are factors that depend on the specific boundary conditions, as shown below:

e Pinned-pinned

2
P (C.22)
2
B—0 (C.23)
e Clamped-clamped
A = 20 (4(=1)" cosh(ky) +2kn(cgsh(2/~fn) +1) — 4sinh(2k,)) (C.24)
8 cosh”(k,,)
B=0 (C.25)
e Pinned-clamped
2+ (4k, — 2) cosh(2k,) — 2sinh(2
4 = Fnl2+ (4o = 2) cosh(2hy) — 25inh(2h) (C.26)
16 sinh”(k,,)
B=0 (C.27)

12



e Pinned-free
kn((6 + 47S3,) cosh(2k,,) + 6(sinh(2k,,) — 1))

A= C.28

16sinh?(k,,) ( )

B=1 (C.29)

e Clamped-free
A - _ 2kp(sinh(kn) —3(=1)")  kn(=1)"(1 +4) cosh(2inm — k) 2k2
N 4 cosh(ky) 4 cosh? (k) 4 cosh®(ky,)
ARG c2osh(k'n(1 +20))  ha(ky cosh(2k:n)2+ 5sinh(2k,)) (©50)
4 cosh” (k) 4 cosh” (k)
B=2 (C.31)

D High-frequency terms in flow velocity influenced by a tube
vibrating in a single mode under a constant pressure gradient
The radially-averaged flow velocity, (v}, is given by

(v)y = Ko+ Koy ecos(2wpt) + Koy s sin(2wpt) + Ky, cos(dwnt) + Kag, s sin(dwy,t)
+ K e 0s(6wnt) + Kgw,s sin(6wnt) | (D.1)

where Ko, Koy, Kow, s, Kaw,c; Kaw,s, Kow,c and Kg, s are given, respectively, by
Op R?

KO = *@@ + 0(64) , (DZ)
Op Ae?R? Op Ae’R?  pw?LBe?R? 2pw, R? 6
Kopo—=—2L _op n Re fyos O(e5) | D.3
2, 0z 16p ( 0z 16pu 81 efbe +0() (D-3)
Op Ae’R?>  pw2 LBe?R? 2pwn, R? 6
Koy = (-2 n Tm fiyes O(% | D.4
» (82 ) P £ PRTEY (D.4)
% _Op A%t R? _ Op A%'R? N pw2 L A Be*R? Ref 2pwn, R?
e 0z 1284 0z 64u 324 bes
Op A%e*R?  pw?L A Be*R? 4pw,, R
T (8 e - P Y Ref (22 ) 0. (D5)
K Op A%c*R? . pw2 L A Be*R? I f 2pw, R?
= —a_ m Jpes
dens 0z 64u 324 b U
Op A%¢*R?  pw2L A Be*R? 4pw, R?
(az 128[14 - 32/~L Imfbes + 0(68) ) (D6)
i _ 7@143561%2 7@14356]%2 pw2 L A%2BeSR? Ref 2pwn, R?
bw,e 9z 15364 9z 5124 2561 bes
@A?’EGR2 _ pw2 L A%2BeS R? Ref 4pw, R?
0z 512u 1284 bes
Op A3SR?  pw? L A?BeSR? 6pw, R?
<_8z 1536y 2561 Refoes +OE"), (D7)
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O A3:6 B2 27 A2R.6p2 R?
Koo, — (p 5R+pwnLABER)Imfbes(2pr>

9z 5124 2561
Op A3¢SR?  pw?L A’Be®R? dpwn, R?
a. - Imfbes
0z 512u 128 1
Op A3eSR? pw?L A’Be®R? 6pwn R?
+ | —5 Imfbes
0z 15364 2564

with fpes given by

s, 2
fbes(x) - iz <1 \/ﬁJg\/E) ’

and Re fpes and Im fp.s account for its real and imaginary parts, respectively.

14

) + 0",



