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A Derivation of the coupled equations of motion via the Minimal
Action’s Principle

The Hamilton’s Principle for an open system at constant temperature, is given by

δS + δW + δC = 0 . (A.1)

Expressions for the variation of each term are given in the following subsections.

Variation of the kinetic energy of the fluid

It is given by

δ

∫
t

Tfdt = δ

∫
t

∫
V

1

2
ρ |vfluid|2 dV dt . (A.2)

In Cartesian coordinates, fluid velocity vector vfluid is given as follows:

vfluid =

0,
∂u

∂t
+

v ∂u∂z√
1 +

(
∂u
∂z

)2 , v√
1 +

(
∂u
∂z

)2
 . (A.3)

In the small deformation limit, we expand the term 1√
1+( ∂u

∂z )
2
, as follows:

1√
1 +

(
∂u
∂z

)2 = 1− 1

2

(
∂u

∂z

)2

+
3

8

(
∂u

∂z

)4

+ ... ≈ 1 (A.4)

and, subsequently, fluid velocity vector is simplified to

vfluid ≈
(

0,
∂u

∂t
+ v

∂u

∂z
, v

)
(A.5)

and, accordingly, the magnitude of vfluid is given by

|vfluid|2 = v2 +

(
∂u

∂t

)2

+ 2v
∂u

∂t

∂u

∂z
+ v2

(
∂u

∂z

)2

. (A.6)
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Afterwards, |vfluid| from (A.6) is incorporated into the Kinetic Energy in (A.3). The variation of the
kinetic energy of the fluid leads to the following expression:

δ

∫
t

Tfdt =

∫
t

∫
V

(
−ρ∂

2u

∂t2
− ρv2 ∂

2u

∂z2
− 2ρv

∂2u

∂t∂z
− ρ∂v

∂t

∂u

∂z
− ρ∂v

∂z

∂u

∂t

)
δu (A.7)

+

(
−ρ∂v

∂t

(
1 +

(
∂u

∂z

)2
)
− 2ρv

∂u

∂z

∂2u

∂z∂t
− ρ

(
∂2u

∂t2
∂u

∂z
+
∂u

∂t

∂2u

∂z∂t

))
δzfluid dV dt .

Variation of the kinetic energy of the tube

It is given by

δ

∫
t

Ttdt = δ

∫
t

∫
V

1

2
ρ |vtube|2 dV dt . (A.8)

In Cartesian coordinates,

vtube =

0,
∂u

∂t
+ v

∂u
∂z√

1 +
(
∂u
∂z

)2 , v 1√
1 +

(
∂u
∂z

)2
 (A.9)

and the magnitude of tube velocity vector is given by

|vtube|2 =

(
∂u

∂t

)2

. (A.10)

Subsequently, substituting the magnitude of tube velocity from (A.10) into the kinetic energy of tube
in (A.9). The computation of the variation leads to the following expression:

δ

∫
t

Ttdt =

∫
t

∫
V

(
−ρt

∂2u

∂t2

)
δu dV dt . (A.11)

Variation of the potential energy of the tube

It is given by the following expression:

δ

∫
t

Vtdt = δ

∫
t

∫
V

1

2
Ey2

(
∂2u

∂z2

)2

dV dt , (A.12)

and its variation is computed as follows:

δ

∫
t

Vtdt = δ

∫
t

∫
V

Ey2
∂4u

∂z4
δu dV dt . (A.13)

Variation of the external work

It is given by the expression previously stated in Section 2 of the main article, as

δW =

∫
t

∫
S

Fext · δrfluid dS dt =

∫
t

∫
S

(−p1 + τ) · n · δrfluid dS dt . (A.14)
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Variation of the constrains

The conservation of fluid mass has been incorporated as a restriction in the following form:

δC = δ

∫
t

∫
V

Λ∇ · rfluiddV dt . (A.15)

From the properties of the differential operators, it is followed that

∇ · Λrfluid = rfluid · ∇Λ + Λ∇ · rfluid (A.16)

and, by a rearrangement, the following expression is obtained:

Λ∇ · rfluid = ∇ · Λrfluid − rfluid · ∇Λ . (A.17)

Substituting (A.17) into (A.15), leads to∫
V

Λ∇ · rfluiddV =

∫
V

∇ · ΛrfluiddV −
∫
V

rfluid · ∇ΛdV . (A.18)

By the divergence theorem, the following expression is obtained:∫
V

∇ · Λrfluid dV =

∫
S

Λrfluid · n dS , (A.19)

which is incorporated in the constrain, as follows:∫
V

Λ∇ · rfluiddV =

∫
S

Λrfluid · n dS −
∫
V

rfluid · ∇ΛdV . (A.20)

By considering that the fluid motion only occurs along the axial direction of the tube as stated in the
main article, is given as below:

rfluid = rtube + zfluid qtan , (A.21)

which corresponds to the statement in the body of the article, as

vfluid = vtube + v qtan . (A.22)

Within the limit of small deformation, the differential operators are simplified to the following expres-
sions:

∇ · rfluid =
∂zfluid
∂z

, (A.23)

rfluid · ez = zfluid , (A.24)

rfluid · ∇Λ = zfluid (ez · ∇Λ) . (A.25)

Afterwards, the considerations in (A.20), (A.23) and (A.24) are incorporated in the constraint in (A.15),
and the variation is computed, leading to the following result:

δC =

∫
t

∫
S

Λδzfluid dS dt−
∫
t

∫
V

∇Λ · ezδzfluid dV dt . (A.26)
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Finally, the expressions in (A.7), (A.11), (A.13), (A.14) and (A.26) are incorporated in the Hamilton’s
principle stated in (A.1), the following expression is obtained:∫

t

∫
V

(
−(ρ+ ρt)

∂2u

∂t2
− ρv2 ∂

2u

∂z2
− 2ρv

∂2u

∂t∂z
− ρ∂v

∂t

∂u

∂z
− ρ∂v

∂z

∂u

∂t
− Ey2 ∂

4u

∂z4

)
δu dV dt

+

∫
t

∫
V

(
−ρ∂v

∂t
− 2ρv

∂u

∂z

∂2u

∂z∂t
− ρ

(
∂2u

∂t2
∂u

∂z
+
∂u

∂t

∂2u

∂z∂t

)
−∇Λ · ez

)
δzfluid dV dt

+

∫
t

∫
S

((−p1 + τ) · n + Λn) · ezδzfluid dS dt = 0 , (A.27)

where the sub-indexes in volume regions V1, V2 and the surfaces S1, S2 where omitted for the sake of
simplicity in the expression; however, each term in the integrals should be performed on its corresponding
region. Equation (A.27) leads to one equation of motion for the variation of each of the field variables
(which are u and zfluid).

For the variation of tube displacement, δu, we obtain the following expression:∫
V

(
−ρ∂

2u

∂t2
− ρv2 ∂

2u

∂z2
− 2ρv

∂2u

∂t∂z
− ρ∂v

∂t

∂u

∂z
− ρ∂v

∂z

∂u

∂t
− ρt

∂2u

∂t2
− Ey2 ∂

4u

∂z4

)
dV = 0 . (A.28)

For the variation of fluid displacement δzfluid, we obtain the following expression:∫
V

(
−ρ∂v

∂t

(
1 +

(
∂u

∂z

)2
)
− 2ρv

∂u

∂z

∂2u

∂z∂t
− ρ

(
∂2u

∂t2
∂u

∂z
+
∂u

∂t

∂2u

∂z∂t

)
−∇Λ · ez

)
dV

+

∫
S

((−p1 + τ) · n + Λn) · ezdS = 0 . (A.29)

Integrals in (A.29) are applied on different integration regions: the first one is a volume integral,
whereas the second one is a surface integral. Therefore, each integral vanishes independently, leading to
the following expression for the volume integral:∫

V

(
−ρ∂v

∂t

(
1 +

(
∂u

∂z

)2
)
− 2ρv

∂u

∂z

∂2u

∂z∂t
− ρ

(
∂2u

∂t2
∂u

∂z
+
∂u

∂t

∂2u

∂z∂t

)
−∇Λ · ez

)
dV = 0 , (A.30)

and this is the expression given for the surface integral:∫
S

((−p1 + τ) · n + Λn) · ezδzfluiddS = 0 . (A.31)

From (A.31), we obtain the value of the Lagrangian multiplier Λ, as

Λn = (p1− τ) · n . (A.32)

Therefore, the physical meaning of the Lagrangian multiplier Λ is the net stress applied along the plane
in which fluid flow occurs. It is possible to see that the volume integral in δC in (A.26) incorporates a
force in the equation of motion, given by the spatial derivative of Λ, as follows:

∇Λ · ez =
∂p

∂z
− (∇ · τ) ·ez , (A.33)

where the stress tensor of a Newtonian fluid and its divergence must be given in terms of the dynamic
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coordinates (r′, θ′, z′), leading to the following expression:

(∇ · τ) ·ez′ = µ

(
∂2vz′

∂r′2
+

1

r′
∂vz′

∂r′
+

1

r′2
∂2vz′

∂θ′2
−

∂2u
∂z′2

(
sin(θ′)∂vz′∂r′ + cos(θ′)

r′
∂vz′
∂θ′

)
(

1 +
(
∂u
∂z

)2)3/2 − r′ sin(θ′)∂
2u
∂z2

−

(
∂2u
∂z2

)2
vz′((

1 +
(
∂u
∂z

)2)3/2 − r′ sin(θ′)∂
2u
∂z2

)2

)
. (A.34)

When the small deformation limit is considered, along with a tube radius much smaller than the radius
of curvature of the tube, and the angular dependence of the flow velocity is neglected, then the last three
terms in (A.34) are zero, which leads to the following approximated expression:

(∇ · τ) ·ez′ = µ

(
∂2vz′

∂r′2
+

1

r′
∂vz′

∂r′

)
. (A.35)

and the prime notation in (A.35) omitted as in the rest of this section. Incorporating Λ from (A.32) into
(A.30), the following expression is obtained:∫

V

(
−ρ∂v

∂t
− 2ρv

∂u

∂z

∂2u

∂z∂t
− ρ

(
∂2u

∂t2
∂u

∂z
+
∂u

∂t

∂2u

∂z∂t

)
− ∂p

∂z
+ µ

(
∂2vz′

∂r′2
+

1

r′
∂vz′

∂r′

))
dV = 0 . (A.36)

B Analytical solution of flow velocity influenced by tube vibra-
tion

For the case of small flow velocity respect to the velocity of propagation of elastic waves along the tube,
the equations of motion are rewritten below:

EI
∂4u

∂z4
+
(
ρAf + ρtAt

)∂2u
∂t2

= 0 , (B.1)

ρ
∂v

∂t
+ ρg(t)v + ρh(t) +

∂p

∂z
− µ

(
∂2v

∂r2
+

1

r

∂v

∂r

)
= 0 , (B.2)

where E corresponds to Young modulus of the tube, I is the second moment of inertia, which for a
cylindrical shell is given by

I =
π

4

(
R4
o −R4

)
, (B.3)

where Ro and R are the outer and inner radius, respectively.
Equation (B.1) is solved when initial and boundary conditions are given, and leads to a solution of the

form

u(z, t) =

N∑
n=1

An sin(knz − ωnt) , (B.4)

where An is the amplitude of each plane wave, kn is the spatial modulation and ωn is the corresponding
frequency, which is obtained by the dispersion relation associated to (B.1), as

ω(k) = ±k2
√

EI

ρAf + ρtAt
. (B.5)
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Then, the solution u(z, t) is incorporated in g(t) and h(t). In the following treatment, the solution of
(B.2) for flow velocity is provided for arbitrary functions g(t) and h(t).

Equation (B.2) is a linear non-homogeneous partial differential equation with time-dependent coeffi-
cients —particularly, ρg(t)—. The non-homogeneous term is only dependent on time as well —particularly,
ρh(t)—. Therefore, we write the general solution of such differential equation in the following form:

v(r, t) = vhomo(r, t) + vpart(t) , (B.6)

where vhomo(r, t) is the solution of the associated homogeneous differential equation, whereas vpart(t) is
a particular solution of the inhomogeneous term. Equation for vhomo(r, t) is

∂vhomo
∂t

+ g(t)vhomo −
µ

ρ

(
∂2vhomo
∂r2

+
1

r

∂vhomo
∂r

)
= 0 . (B.7)

By performing separation of variables, vhomo(r, t) = R(r)T (t) and substituting in (B.7), we have

1

T

∂T

∂t
+ g(t) =

1

R

µ

ρ

(
∂2R

∂r2
+

1

r

∂R

∂r

)
= −iλ , (B.8)

where −iλ is the constant of separation, it has been expressed in such a way in order to simplify further
treatment. In all the integrals involved, we will omit the primed indexes for integration over time, for
the sake of simplicity during the derivation. Separation of variables allows one to solve two independent
ordinary differential equations from (B.8). First, the equation for T (t) results:

dT

dt
+ (iλ+ g(t))T = 0 , (B.9)

whose solution is given by

T = T0e
−iλte

−
∫ t
t0
g(t)dt

. (B.10)

The equation for R(r) is given by

r2
d2R

dr2
+ r

dR

dr
+
iλρ

µ
r2R = 0 , (B.11)

with the following solution:

R(r) = R1J0

(√
iλρ

µ
r

)
+R2Y0

(
−

√
iλρ

µ
r

)
. (B.12)

Incorporating expressions from (B.10) and (B.12) in vhomo and after renaming the constant coefficients,
the solution of (B.7) is given by

vhomo(r, t) =

[
C1J0

(√
λρ

µ
r

)
+ C2Y0

(
−

√
λρ

µ
r

)]
e−iλte−

∫ t
0
g(t)dt . (B.13)

Afterwards, differential equation for vpart(t) is

dvpart
dt

+ g(t)vpart +
1

ρ

∂p

∂z
+ h(t) = 0 . (B.14)

Equation (B.14) is a first-order ordinary differential equation; hence, we rewrite (B.14) as a differential
form, as follows:

M(vpart, t)dvpart +N(vpart, t)dt = 0 , (B.15)
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with
M(vpart, t) = 1 , (B.16)

N(vpart, t) = g(t)vpart +
1

ρ

∂p

∂z
+ h(t) . (B.17)

An exact differential form for the function F (vpart, t) is given by

dF =
∂F

∂vpart
dvpart +

∂F

∂t
dt (B.18)

with equal cross derivatives, as stated below:

∂M

∂vpart
=
∂N

∂t
. (B.19)

However, (B.16) is not an exact differential form, because the cross derivatives are unequal, as

∂M

∂t
= 0 , (B.20)

∂N

∂vpart
= g(t) . (B.21)

An integrating factor µ(t) is incorporated in (B.16), to obtain the following exact differential form:

dF = µ(t) [M(v, t)dv +N(v, t)dt] = 0 , (B.22)

where µ(t) is given by

µ(t) = exp

(∫ ∂N
∂vpart

− ∂M
∂t

M
dt

)

= exp

(∫
g(t)dt

)
. (B.23)

The solution of the differential form is given by

F (v, t) = constant , (B.24)

where the partial derivatives of F (v, t) correspond to

∂F

∂vpart
= e

∫
g(t)dt , (B.25)

∂F

∂t
= e

∫
g(t)dt

(
g(t)vpart +

1

ρ

∂p

∂z
+ h(t)

)
. (B.26)

By partial integration of (B.25) and (B.26), the solution of (B.14) is shown below:

F = vpart(t)e
∫
g(t)dt +

∫
e
∫
g(t)dt

(
1

ρ

∂p

∂z
+ h(t)

)
dt = C0 . (B.27)
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A rearrangement of terms allows one to obtain the following explicit expression for vpart, as

vpart(t) = e−
∫
g(t)dt

(
C0 −

∫
e
∫
g(t)dt

(
1

ρ

∂p

∂z
+ h(t)

)
dt

)
. (B.28)

The expressions for vhomog in (B.13) and vpart in (B.28) are incorporated into (B.2), leading to

v(r, t) = e
−

∫ t
t0
g(t′)dt′

(
C0 + e−iλtC1J0

(√
iλρ

µ
r

)
+ e−iλtC2Y0

(
−

√
iλρ

µ
r

)

−
∫ t

t0

e
∫ t′
t0
g(t′′)dt′′

(
1

ρ

∂p

∂z
+ h(t′)

)
dt′

)
, (B.29)

where t0 is an arbitrary lower time for integration. For practical purposes, we will compute such integrals
by considering t0 = 0.

Equation (B.29) is not general in the sense that considers that a single value of λ has been provided.
However, some boundary conditions require several values of the eigenvalue. Thus, a general solution
of (B.2) can be expressed as a linear combination of expressions like the one in (B.29). Moreover, the
eigenvalue λ can spread any real value, i. e., λ ε (−∞,∞), so the linear combination is generalised to an
integral, as follows:

v(r, t) = e−
∫ t
0
g(t′)dt′

(∫ ∞
−∞

e−iλt

(
C1(λ)J0

(√
iλρ

µ
r

)
+ C2(λ)Y0

(
−

√
iλρ

µ
r

))
dλ

−
∫ t

0

e
∫ t′
0
g(t′′)dt′′

(
1

ρ

∂p

∂z
+ h(t′)

)
dt′

)
. (B.30)

where the term C0 has been omitted since it is incorporated in C1(λ) as

C1(λ)e−iλtJ0

(√
iλρ

µ
r

)∣∣∣∣∣
λ=0

= C0 . (B.31)

Equation (B.30) is capable to account for any boundary condition. Particularly, we study the classical
conditions of Hagen-Poiseuille flow, i. e., finite flow in the center of the tube, given by

v(r, t)

∣∣∣∣
r=0

= finite , (B.32)

and the no-slip condition at the tube walls, which is given by

v(r, t)

∣∣∣∣
r=R

= 0 . (B.33)

Incorporation of finite flow stated in (B.32) leads to the following result:

C2 = 0 , (B.34)

since the Neumann function diverges at r = 0. Besides, the no-slip condition stated in (B.33) is substituted
into (B.30), and leads to the following result:

e−
∫ t
0
g(t′)dt′

(∫ ∞
−∞

e−iλtC1(λ)J0

(√
iλρ

µ
R

)
dλ−

∫ t

0

e
∫ t′
0
g(t′′)dt′′

(
1

ρ

∂p

∂z
+ h(t′)

)
dt′

)
= 0 . (B.35)
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In order to solve (B.35) for the coefficients C1(λ), we rewrite the time-dependent integral in terms of
the Fourier identity, as follows:∫ t

0

e
∫ t′
0
g(t′′)dt′′

(
1

ρ

∂p

∂z
+ h(t′)

)
dt′ = − 1

2π

∫ ∞
−∞

1

iλ

∫ ∞
−∞

e
∫ t
0
g(t′)dt′

(
1

ρ

∂p

∂z
+ h(t)

)
eiλtdt e−iλtdλ (B.36)

Substituting (B.36) into the no-slip condition in (B.33), we obtain the following expression:∫ ∞
−∞

e−iλtC1(λ)J0

(√
iλρ

µ
R

)
dλ+

1

2π

∫ ∞
−∞

1

iλ

∫ ∞
−∞

e
∫ t
0
g(t′)dt′

(
1

ρ

∂p

∂z
+ h(t)

)
eiλtdt e−iλtdλ = 0 (B.37)

A rearrange of the integral on λ in (B.37) leads to the following result:∫ ∞
−∞

(
C1(λ)J0

(√
iλρ

µ
R

)
+

1

2πiλ

∫ ∞
−∞

e
∫ t
0
g(t′)dt′

(
1

ρ

∂p

∂z
+ h(t)

)
eiλtdt

)
e−iλtdλ = 0 . (B.38)

The integral kernel in (B.38) must vanish, leading to the following expression for C1(λ):

C1(λ) = − 1

2πiλJ0

(√
iλρ
µ R

) ∫ ∞
−∞

e
∫ t
0
g(t′)dt′

(
1

ρ

∂p

∂z
+ h(t)

)
eiλtdt . (B.39)

Finally, by incorporating C1(λ) in (B.39) and C2(λ) in (B.34) in the general solution stated in (B.30),
the following result is obtained for the flow velocity with no-slip at the tube walls:

v(r, t) =
e−

∫ t
0
g(t′)dt′

2π

∫ ∞
−∞

1

iρλ

1−
J0

(√
iλρ
µ r
)

J0

(√
iλρ
µ R

)
∫ ∞

−∞
e
∫ t
0
g(t′)dt′

(
∂p

∂z
+ ρ h(t)

)
eiλtdt e−iλtdλ (B.40)

C Details of the solution of fluid dynamics influenced by a tube
moving in a single vibration mode

Equation (B.40) allows one to solve fluid dynamics if the condition of tube motion is previously given and
computed in g(t) and h(t), as defined in the body of article. Tube dynamics, as stated in (2.31) is solved
along with boundary conditions.

A specific experimental setting of the tube would determine the way in which edges are fixed in an
experiment (Arash & Wang 2012). Experimental literature on elastic nano-tubes shows three common
geometrical conditions for the tube edges (Krishnan et al. 1998), as shown below:

• Pinned edge. It means that the displacement of the tube edge is zero, and that there is no curvature at
that point. Physically, this implies that no elastic strain is imposed at the tube edge. Mathematically,
for a tube edge located at z = z0, this is written as:

u

∣∣∣∣
z=z0

= 0 and
∂2u

∂z2

∣∣∣∣
z=z0

= 0 . (C.1)

• Clamped edge. It means that the displacement of the tube edge is zero, and that the tube at that
point is constrained to be horizontal. Mathematically, for a tube edge located at z = z0, this is
written as:

u

∣∣∣∣
z=z0

= 0 and
∂u

∂z

∣∣∣∣
z=z0

= 0 . (C.2)
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• Free edge. It means that the displacement of the tube edge is not fixed, the only constrain is that
there is no curvature at that point and on its neighborhood. Mathematically, for a tube edge located
at z = z0, this is written in the following way:

∂2u

∂z2

∣∣∣∣
z=z0

= 0 and
∂3u

∂z3

∣∣∣∣
z=z0

= 0 . (C.3)

For a finite-size tube, which has two edges, any combination of these three possibilities should be, in
principle, experimentally possible. This gives 6 sets of boundary conditions that discretise differently the
dispersion relation, namely, pinned-pinned, clamped-clamped, pinned-clamped, pinned-free and clamped-
free. Each of these sets imply four conditions on u and/or its spatial derivatives and leads to different
vibration modes.

Fourier transform of (2.31) leads to

EI
d4û

dz4
− (ρAf + ρtAt)ω

2û = 0 , (C.4)

where û(z, ω) denotes the Fourier transform of u(z, t).
The general solution of (C.4) is given by

û(z, ω) = C1e
ikz + C2e

−ikz + C3e
kz + C4e

−kz , (C.5)

where k is given by

k =

(
(ρAf + ρtAt)ω

2

EI

) 1
4

. (C.6)

In order to determine the particular solution of (C.4) for each set of boundary conditions, (C.1)-(C.3) are
incorporated in the general solution in (C.5), leading to a 4×4 system of algebraic homogeneous equations
for C1, C2, C3 and C4. A homogeneous system leads to non-trivial solutions only if the determinant of its
coefficients vanishes, as stated below:

DBC = 0 , (C.7)

where the suffix BC accounts for each set of boundary conditions. For each case, the expression of the
determinant is given below:

• Pinned-pinned

DPP =

∣∣∣∣∣∣∣∣
1 1 1 1
−k2 −k2 k2 k2

eikL e−ikL ekL e−kL

−k2eikL −k2e−ikL k2ekL k2e−kL

∣∣∣∣∣∣∣∣ = 16ik4 sin(kL) sinh(kL) . (C.8)

• Clamped-clamped

DCC =

∣∣∣∣∣∣∣∣
1 1 1 1
ik −ik k −k
eikL e−ikL ekL e−kL

ikeikL −ike−ikL kekL −ke−kL

∣∣∣∣∣∣∣∣ = 8ik2(cos(kL) cosh(kL)− 1) . (C.9)

• Pinned-clamped

DPC =

∣∣∣∣∣∣∣∣
1 1 1 1
ik −ik k −k
eikL e−ikL ekL e−kL

−k2eikL −k2e−ikL k2ekL k2e−kL

∣∣∣∣∣∣∣∣
= 8ik3(cosh(kL) sin(kL)− cos(kL) sinh(kL)) . (C.10)
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• Pinned-free

DPF =

∣∣∣∣∣∣∣∣
1 1 1 1
−k2 −k2 k2 k2

−k2eikL −k2e−ikL k2ekL k2e−kL

−ik3eikL ik3e−ikL k3ekL −k3e−kL

∣∣∣∣∣∣∣∣
= −8ik7(cosh(kL) sin(kL)− cos(kL) sinh(kL)) . (C.11)

• Clamped-free

DFC =

∣∣∣∣∣∣∣∣
1 1 1 1
ik −ik k −k

−k2eikL −k2e−ikL k2ekL k2e−kL

−ik3eikL ik3e−ikL k3ekL −k3e−kL

∣∣∣∣∣∣∣∣ = −8ik6(cos(kL) cosh(kL) + 1) . (C.12)

The condition for non-trivial solutions, as stated in (C.8)-(C.12), is only accomplished for certain values
of k, leading to discretised values kn, which are summarized in table (1).

Table 1: Discretisation of k = kn induced by the different sets of boundary conditions. Values shown for
kn are asymptotic approximated solutions for (C.8)-(C.12).

Set of boundary conditions knL
Pinned-pinned nπ

Clamped-clamped (n+ 1/2)π
Free-free (n+ 1/2)π

Pinned-clamped (n+ 1/4)π
Pinned-free (n+ 1/4)π

Clamped-free (n− 1/2)π

The discretisation of k = kn implies also the discretisation of the frequency ω = ωn, since k and ω are
related by (C.6).

After discretisation of kn and ωn, each 4 × 4 system of equations is simplified to a 4 × 3 system of
equations in which one of the variables is left as a degree of freedom.

Such treatment leads to non-trivial solutions of the following form:

ûn(z, ω) = fn(z) (C1,nδ(ω − ωn) +D1,nδ(ω + ωn)) , (C.13)

where fn(z) is a spatial function obtained for each set of B. C. By performing the inverse Fourier transform
of (C.13), the following expression is obtained for un(z, t), as follows:

un(z, t) = U0fn(z) sin(ωnt+ ϕ) . (C.14)

The explicit expression for fn(z) for the different sets of boundary conditions is provided in the following
list.

• Pinned-pinned
fn(z) = sin(knz) (C.15)
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• Clamped-clamped

fn(z) = sin(knz)− sinh(knz) +
(−1)n − sinh(knL)

cosh(knL)
(cos(knz)− cosh(knz)) (C.16)

• Pinned-clamped

fn(z) = sin(knz)−
(−1)n√

2

sinh(knz)

sinh(knL)
(C.17)

• Pinned-free

fn(z) = sin(knz) +
(−1)n√

2

sinh(knz)

sinh(knL)
(C.18)

• Clamped-free

fn(z) = sin(knz)− sinh(knz) +
(−1)n − sinh(knL)

cosh(knL)
(cos(knz)− cosh(knz)) (C.19)

The solution un(z, t) from (C.14) is incorporated into the Coriolis and pulling forces denoted by g(t)
and h(t). The phase φ = 0 is considered for simplicity, leading to the following result:

g(t) =
U2
0Aω

L2
sin(2ωt) , (C.20)

h(t) =
U2
0Bω

2

L
cos(2ωt) , (C.21)

where A and B are factors that depend on the specific boundary conditions, as shown below:

• Pinned-pinned

A =
k2n
2

(C.22)

B = 0 (C.23)

• Clamped-clamped

A =
2kn (4(−1)n cosh(kn) + 2kn(cosh(2kn) + 1)− 4 sinh(2kn))

8 cosh2(kn)
(C.24)

B = 0 (C.25)

• Pinned-clamped

A =
kn(2 + (4kn − 2) cosh(2kn)− 2 sinh(2kn))

16 sinh2(kn)
(C.26)

B = 0 (C.27)
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• Pinned-free

A =
kn((6 + 4πβn) cosh(2kn) + 6(sinh(2kn)− 1))

16 sinh2(kn)
(C.28)

B = 1 (C.29)

• Clamped-free

A = −2kn(sinh(kn)− 3(−1)n)

4 cosh(kn)
− kn(−1)n(1 + i) cosh(2inπ − kn)

4 cosh2(kn)
− 2k2n

4 cosh2(kn)

+
kn(1− i)(−1)n cosh(kn(1 + 2i))

4 cosh2(kn)
+
kn(kn cosh(2kn) + 5 sinh(2kn))

4 cosh2(kn)
(C.30)

B = 2 (C.31)

D High-frequency terms in flow velocity influenced by a tube
vibrating in a single mode under a constant pressure gradient

The radially-averaged flow velocity, 〈v〉, is given by

〈v〉 = K0 +K2ω,c cos(2ωnt) +K2ω,s sin(2ωnt) +K4ω,c cos(4ωnt) +K4ω,s sin(4ωnt)

+K6ω,c cos(6ωnt) +K6ω,s sin(6ωnt) , (D.1)

where K0, K2ω,c, K2ω,s, K4ω,c, K4ω,s, K6ω,c and K6ω,s are given, respectively, by

K0 = −∂p
∂z

R2

8µ
+O(ε4) , (D.2)

K2ω,c = −∂p
∂z

Aε2R2

16µ
+

(
−∂p
∂z

Aε2R2

16µ
+
ρω2

nLBε
2R2

8µ

)
Refbes

(
2ρωnR

2

µ

)
+O(ε6) , (D.3)

K2ω,s =

(
−∂p
∂z

Aε2R2

16µ
+
ρω2

nLBε
2R2

8µ

)
Imfbes

(
2ρωnR

2

µ

)
+O(ε6) , (D.4)

K4ω,c = −∂p
∂z

A2ε4R2

128µ
+

(
−∂p
∂z

A2ε4R2

64µ
+
ρω2

nLABε
4R2

32µ

)
Refbes

(
2ρωnR

2

µ

)
+

(
∂p

∂z

A2ε4R2

128µ
− ρω2

nLABε
4R2

32µ

)
Refbes

(
4ρωnR

2

µ

)
+O(ε8) , (D.5)

K4ω,s =

(
−∂p
∂z

A2ε4R2

64µ
+
ρω2

nLABε
4R2

32µ

)
Imfbes

(
2ρωnR

2

µ

)
+

(
∂p

∂z

A2ε4R2

128µ
− ρω2

nLABε
4R2

32µ

)
Imfbes

(
4ρωnR

2

µ

)
+O(ε8) , (D.6)

K6ω,c = −∂p
∂z

A3ε6R2

1536µ
+

(
−∂p
∂z

A3ε6R2

512µ
+
ρω2

nLA
2Bε6R2

256µ

)
Refbes

(
2ρωnR

2

µ

)
+

(
∂p

∂z

A3ε6R2

512µ
− ρω2

nLA
2Bε6R2

128µ

)
Refbes

(
4ρωnR

2

µ

)
+

(
−∂p
∂z

A3ε6R2

1536µ
+
ρω2

nLA
2Bε6R2

256µ

)
Refbes

(
6ρωnR

2

µ

)
+O(ε10) , (D.7)
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K6ω,s =

(
−∂p
∂z

A3ε6R2

512µ
+
ρω2

nLA
2Bε6R2

256µ

)
Imfbes

(
2ρωnR

2

µ

)
+

(
∂p

∂z

A3ε6R2

512µ
− ρω2

nLA
2Bε6R2

128µ

)
Imfbes

(
4ρωnR

2

µ

)
+

(
−∂p
∂z

A3ε6R2

1536µ
+
ρω2

nLA
2Bε6R2

256µ

)
Imfbes

(
6ρωnR

2

µ

)
+O(ε10) , (D.8)

with fbes given by

fbes(x) =
8

ix

(
1− 2J1

√
ix√

ix J0
√
ix

)
, (D.9)

and Re fbes and Im fbes account for its real and imaginary parts, respectively.
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