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S1 Electrophoretic Mobility

The bead electrophoretic mobility µE
0 was estimated based on experimental data for elec-

trophoretic velocity vE0 of λ-DNA in the absence of shear (Montes, 2018). The experiments
were performed in a channel of length Lc = 1.8 cm and cross-section of 100 × 100 µm2.
Solutions of DNA were diluted to concentrations between 0.2 pM and 1 pM using 0.25X
Tris-EDTA (2.5 mM Tris-HCl, 0.25 mM EDTA) buffer and were labelled with fluorescent
YOYO-1 dye at a ratio of one dye molecule to four base pairs. Under these conditions, the
Debye length was estimated to be λD = 5.8 nm = 0.030b.

Figure S1 shows dependence of the electrophoretic velocity vE0 = µE
0 E of λ-DNA on

the electric potential V = ELc in the absence of shear. Fitting the dependence of the
electrophoretic velocity on the electric field to a straight line yields µE

0 = 120.7e/ζ , where e
is the elementary charge and ζ = 6πηa is the friction coefficient of a single bead.
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Figure S1: Experimentally determined dependence of the electrophoretic velocity vE0 of λ-
DNA on the electric potential V in the absence of shear, as given by Montes (2018). The
dashed line shows results of a least-squares fit of the experimental data to a straight line.
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S2 Relaxation Time of the Polymer

There are multiple definitions of the polymer relaxation time τr, including the viscous relax-
ation time and the relaxation times of the end-to-end vector R(t) and distance R(t). Since
different definitions yield different values of τr (Kekre et al., 2010), it is necessary to choose
definition(s) suitable to specific applications. In the current work, the relaxation time τr
of the polymer is utilized to (i) estimate the time required for the polymer to adjust to a
change in the electric field strength and the local shear rate and (ii) compare Weissenberg
numbers in our simulations and the experiments of Arca et al. (2015).

The first of these applications requires us to choose the definition that corresponds to the
largest value of τr. As shown by Kekre et al. (2010), this is the relaxation time of the end-

to-end vector R(t) (in what follows, this relaxation time is denoted as τ
(v)
r ). On the other

hand, to compare the experimental Weissenberg number with the simulations, it is necessary
to compute the relaxation time using an approach similar to the one used in experiment.
Experimentally, the relaxation time was measured from dynamics of the polymer extension
(Gerashchenko & Steinberg, 2008). Therefore, the relevant relaxation time to determine the
Weissenberg number is the relaxation time of the end-to-end distance R(t) (in what follows,

this relaxation time is denoted as τ
(d)
r ).
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Figure S2: Normalized autocorrelation functions of the polymer at equilibrium. The func-
tions C(v) and C(d) correspond to the end-to-end vector and the end-to-end distance, re-
spectively. The dotted black lines show results of least-squares fits of the autocorrelation
functions to the exponential decay law.

The correlations times τ
(v)
r and τ

(d)
r were obtained from the normalized autocorrelation

functions of the end-to-end vector R(t),

C(v)(τ) =
〈R(t) ·R(t+ τ)〉

〈R2〉
, (S1)

and the end-to-end distance R(t),

C(d)(τ) =
〈R(t)R(t+ τ)〉 − 〈R〉2

〈R2〉 − 〈R〉2
, (S2)
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of the polymer at equilibrium. These autocorrelation functions are shown in figure S2. It
is evident that both of these functions follow the exponential decay law, ∝ exp(−t/τr),
and that there is a substantial difference in the decay rate of these functions. Fitting the
autocorrelation function C(v) to the exponential decay law, we obtain τ

(v)
r = 42. Similarly,

fitting the autocorrelation function C(d), we obtain τ
(d)
r = 12. Therefore, the Weissenberg

number is Wi = γτ
(d)
r = 12γ.

In conclusion of this section, we note that the dimensional value of the relaxation time
τ
(d)
r is 0.15 s, which differs from the value of 0.1 s used by Arca et al. (2015) to compute the
Weissenberg number for the experimental system (the latter relaxation time was taken from
the experimental work of Gerashchenko & Steinberg (2008)). Therefore, to avoid ambiguity,
in comparing the simulations results with the experiments, we matched the shear rates rather
than the Weissenberg numbers.

S3 Supplementary Material for Analysis of the Simple

Shear Flow

S3.1 Validation of Langevin Equation (2.16)

In this section, we demonstrate that results of Brownian dynamics simulations in a simple
shear flow are consistent with the Langevin equation (2.16) for the centre of mass of the poly-
mer. Figure S3 shows a typical example of time-dependence of the mean position 〈Rc〉 and
the mean-squared displacement 〈ξcξc〉 of the polymer centre of mass obtained by Brownian
dynamics simulations in a simple shear flow. Here, ξc(t) = Rc(t) − 〈Rc(t)〉. The contri-
bution of the electrophoretic velocity µE

0 E is subtracted from the x-component of 〈Rc(t)〉
in figure S3a to facilitate comparison between electro-hydrodynamic velocities in different
directions.

Figure S3a demonstrates that the x- and y-components of the mean polymer position
〈Rc〉 depend linearly on time (the z-component of 〈Rc〉 is negligible). This confirms that
the mean polymer velocity in a simple shear flow is constant. The xz- and yz-components
of the mean-squared-displacement tensor 〈ξc(t)ξc(t)〉 (shown in figure S3c) are negligible in
comparison with all other components of this tensor. The diagonal components and the xy-
component of the tensor 〈ξc(t)ξc(t)〉 exhibit a linear dependence on time after some initial
transient time ttr. Therefore, for sufficiently large time, the motion of the polymer centre
of mass can be described by the Langevin equation (2.16) with constant drift velocity Vc

and diffusivity D. For the range of parameters considered in the current work, the transient
time of the tensor 〈ξc(t)ξc(t)〉 is of the same order of magnitude as the relaxation time of

the end-to-end vector (τ
(v)
r ≈ 42, see section S2). As shown in section S4.3.1, this time is

sufficiently small to ensure validity of the mean-field model.
It is observed that the off-diagonal xy-component of the tensor 〈ξc(t)ξc(t)〉 tends to have

a somewhat larger transition time than the diagonal components of this tensor. For the
example shown in figure S3, ttr ≈ 20 for the diagonal tensor components and ttr ≈ 100 for
the xy-component. However, this does not affect validity of the mean-field model. This is
because the polymer motion in the x-direction is dominated by the electrophoretic velocity
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Figure S3: Ensemble averages of the mean position and the mean-squared displacement of
the polymer centre of mass obtained by Brownian dynamics simulations of a simple shear
flow with the shear rate γ = 0.3, the electro-hydrodynamic interactions modelled by the
long-range model, and the electric field strength EL = 9.41: (a) mean position 〈Rc(t)〉 (the
z-component of 〈Rc(t)〉 is negligible and is therefore not shown), (b) diagonal and (c) off-
diagonal components of the mean-squared displacement tensor 〈ξc(t)ξc(t)〉. The black dashed
lines show results of a least-squares fit of individual components of 〈Rc(t)〉 and 〈ξc(t)ξc(t)〉
to linear functions of time. Plot (c) shows the absolute values of 〈ξc(t)ξc(t)〉 because the yz-
and xz-components of this tensor are negative at some values of t.

µE
0 E. Hence, the diffusive terms in the x-direction (Dxx, Dxy, Dxz) are neglected in the

mean-field model, see Eq. (2.19) and section S4.3.2.

S3.2 Validation of Power-Law Relationships for Vc,y and Dzz

Power-law relationships between the magnitude of the electric field Em and the electro-
hydrodynamic drift velocity Vc,y in the y-direction and the electro-hydrodynamic dispersion
Dzz in the z-direction are confirmed in figures S4 and S5, respectively.

S3.3 Molecular Mechanism of Electro-Hydrodynamic Dispersion

Electro-hydrodynamic dispersion arises due to fluctuations of the electro-hydrodynamic ve-
locity, which in turn are caused by fluctuations of the polymer configuration. The latter
consist of fast fluctuations of individual beads and slow fluctuations of the molecule as a
whole (e.g., tumbling). Relative importance of these dynamics can be assessed by analysis of
time-scales of fluctuations of the instantaneous electro-hydrodynamic velocity vE

c (t) of the
polymer center of mass; vE

c (t) is obtained by averaging electro-hydrodynamic velocities vE
i (t)

of individual beads (given by Eq. (2.9)) at time t. Typical examples of the autocorrelation
function of the transverse electro-hydrodynamic velocity vEc,y of the centre of mass are shown
in figure S6. For the long-range model, the autocorrelation function decreases by an order of
magnitude within 1 time unit (see figure S6a), which indicates that the dispersion predicted
by this model is dominated by fast bead dynamics.

For the short-range model, the relative contribution of the slow polymer dynamics is more
significant, especially for weak fields (see figure S6b). Nevertheless, even in this case the
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Figure S4: Mean polymer velocity Vc,y in the y-direction in the simple shear flow obtained by
the Brownian dynamics simulations using (a) long-range and (b) short-range models. The
dashed lines show results of the fit to the power law Vc,y ∝ Ep

m.
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Figure S5: Contribution of the electro-hydrodynamic dispersion to the polymer diffusivity
in the z-direction obtained by the Brownian dynamics simulations in the simple-shear flow.
The dashed lines show results of the fit of the data to the empirical relationship Dzz(γ, Em) =

DB
zz(γ) +DE

zz(γ)E
q(γ)
m .
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Figure S6: Autocorrelation functions CE
y (τ) of the transverse electro-hydrodynamic velocity

vEc,y obtained from the Brownian dynamics simulations in a simple shear flow: (a) long-range
model, EL = 1.19, (b) short-range model, ES = 1.58, and (c) short-range model, ES = 16.40.
All autocorrelation functions are normalized so that CE

y (0) = 1.

electro-hydrodynamic fluctuations are dominated by fast fluctuations. This is also evident
from plots of the instantaneous transverse velocities vEc,y shown in figure S7a and b. To
further demonstrate that the slow dynamics of polymer configuration as a whole plays a
relatively small role in dispersion, we explore effects of polymer tumbling on fluctuations of
vEc,y. To this end, we consider dynamics of the orientation cos θ of the end-to-end vector R
with respect to the flow direction. The sign of the orientation indicates which of the beads
(the first or the last one) leads the flow. Of course, the designation of the first and the last
beads is arbitrary, but the same designation is kept throughout each simulation, so that the
change in sign of the orientation reflects a swap in the beads leading the flow.

Typical tumbling dynamics are shown in figure S7c and d. At high shear rate, the
polymer is nearly aligned with the flow (i.e., its orientation is close to +1 or -1) most of
the time and once in a while the orientation flips quickly between these two values, see
figure S7d. The timescale of this tumbling dynamics is comparable with the relaxation time-
scale of the end-to-end vector and is much slower than the timescale of the fluctuations of
the electro-hydrodynamic velocity vEc,y. The magnitude of the correlation coefficient between
the polymer orientation and vEc,y is less than 0.1, which further confirms that the tumbling
dynamics plays a relatively small role in electro-hydrodynamic dispersion.
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Figure S7: Examples of dynamics of (a), (b) instantaneous electro-hydrodynamic velocity
vEc,y and (c), (d) instantaneous orientation cos θ of the end-to-end vector. These trajectories
were obtained with the short-range model, a relatively weak electric field (ES = 1.58), and
simple shear flows with the shear rates of (a),(c) γ = 0.05 and (b),(d) γ = 0.8. The plots
of vEc,y and cos θ at the same shear rate γ are taken from the same segment of the same
Brownian dynamics simulation.
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Figure S8: (a) Experimentally measured fluorescence intensity of DNA labelled by dye
YOYO-1 near the channel inlet (Montes, 2018). Initial conditions for the simulations were
obtained by fitting the experimental data to eP (y) in the interval between the dashed black
lines (P (y) is a polynomial of the 6-th degree). (b) Initial conditions for simulations in a
channel with a square cross-section.

S4 SupplementaryMaterial for Analysis of the Pressure-

Driven Flow

S4.1 Initial Conditions for the Pressure-Driven Flow Obtained

from Experimental Data

In addition to the uniform initial conditions, we utilized initial conditions extracted from
experimental concentration profiles near the channel inlet (2 mm from the channel entrance).
The experiments (Montes, 2018) were performed with fluorescently labelled λ-DNA with the
centre-line velocity of 1200 µm/s and the electrophoretic velocity of 200 µm/s in a channel
with 100× 100 µm2 cross-section.

The fluorescence intensity profile obtained experimentally was smoothed by fitting it to
a function of the form

I(y) = AeP (y), (S3)

where P (y) is a polynomial of the 6-th degree. The image intensity tends to increase near
channel walls due to an imaging artifact (Arca et al., 2015). Therefore, only the data away
from the walls (10 to 90 µm) were considered in the fit to Eq. (S3). The experimentally
measured intensity and results of the fit to Eq. (S3) are shown in figure S8a. Thus obtained
concentration profile C0(y) ∝ eP (y) was rescaled to fit the dimensions of the channel con-
sidered in the simulations. Initial conditions for 3D simulations in a channel with a square
cross-section were computed as C3D(y, z) = C0(y)C0(z) and are shown in figure S8b.
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Figure S9: Concentration profiles in a 2D pressure-driven flow at various positions x along the
channel obtained by the Brownian dynamics simulations with initial conditions determined
from experiment (Montes, 2018). The data shown were obtained using the long-range electro-
hydrodynamic model at the electric field strength EL = 9.41 and the mean shear rate γ̄ =
0.146. Positions x ≥ 105 correspond to the developed profile, which is consistent with the
developed profile obtained with the uniform initial conditions, see figure 6.

S4.2 Concentration Profiles in Pressure-Driven Flows

Typical snapshots of the concentration profiles obtained from Brownian dynamics simula-
tions of pressure-driven flows in the 2D and 3D channels are shown in Figs. S9 and S10,
respectively. It is observed that the developed profiles are independent of the initial condi-
tions. This is further confirmed by figure S11 which shows dependence of the width σ of the
concentration profiles on position x along the channel length. Therefore, unless stated other-
wise, we focus on results obtained with initial conditions determined from the experimental
data.

Two- and three-dimensional flows are compared in figure S12. It is observed that the
2D flows yield slightly narrower profiles. However, overall, the 2D and 3D flows yield very
similar results.
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Figure S10: Concentration profiles in a 3D pressure-driven flow at various positions x along
the channel obtained by the Brownian dynamics simulations. The top and bottom rows
show, respectively, the results obtained with the uniform initial conditions and the initial
conditions determined from experiment (Montes, 2018). The shown data were obtained using
the long-range electro-hydrodynamic model at the electric field strength EL = 9.41 and the
mean shear rate γ̄ = 0.146. Positions x ≥ 105 corresponds to the developed profile.
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Figure S11: Dependence of widths σ(x) of the concentration profiles on position x along
the channel in the 2D and 3D pressure-driven flows. The solid and dashed lines show,
respectively, the results obtained with the uniform initial conditions (ICs) and the initial
conditions determined from experiment (Montes, 2018). The shown data were obtained by
the Brownian dynamics simulations using the long-range electro-hydrodynamic model at
EL = 9.41 and γ̄ = 0.146. The inset shows a magnified area corresponding to developed
profiles.
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Figure S12: Dependence of widths σ of the concentration profiles on position x along the
channel in 3D (solid lines) and 2D (dashed lines) pressure-driven flows. The data were
obtained by the Brownian dynamics simulations at γ̄ = 0.146 using (a) long-range and (b)
short-range electro-hydrodynamic models. The inset in plot (b) shows a magnified area
corresponding to developed profiles for ES = 6.15, 12.30, and 16.40.
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S4.3 Additional Validation of the Mean-Field Model

S4.3.1 Estimation of Time-scales

In this section we demonstrate that in the considered pressure-driven flows the polymer
adjusts to its local environment faster than it travels in the transverse direction. The polymer
response time τr can be estimated as the correlation time τ

(v)
r of the end-to-end vector of

a polymer at equilibrium (about 42 for the polymers considered in the current work, see
section S2). This timescale is comparable with the timescale of relaxation of fluctuations
of the transverse electro-hydrodynamic velocity vEc,y. As shown in figure S6, autocorrelation
functions of vEc,y decay by about 90% within 1 time unit and by more than 99% within
τr = 42.

The distance travelled in the transverse direction during time τr is Vc,yτr and the diffusive
length-scale is (Dyyτr)

1/2. From the simple shear simulations, we find that, within the range
of EL, ES, and γ considered in the current work, Vc,y ≤ O(1) and Dyy = O(1). Therefore,
both the drift and diffusive length-scales are O(10). The shear rate change corresponding
to this distance (assuming a simple parabolic flow) is ∆γ = 4γ̄∆y/H , where ∆y = O(10)
is the distance in the transverse direction travelled by the polymer. Since H = O(100)
and γ̄ = O(0.1), we conclude that ∆γ = O(10−2). Therefore, the change in the shear rate
corresponding to the distance travelled during the relaxation time of the polymer is relatively
small and changes in the polymer environment occur on a slower time-scale than the polymer
relaxation time-scale. This justifies the mean-field model assumption.

S4.3.2 Negligible Contribution of Diffusive Transport in x-Direction.

One of the assumptions in the derivation of the mean-field model Eq. (2.19) from Eq. (2.18)
is that the terms containing components Dxx, Dxy, and Dxz of the diffusion tensor D are
negligible. In this section we verify this assumption.

Components of the diffusive flux jD are

jDx = −Dxx
∂C

∂x
−Dxy

∂C

∂y
, (S4)

jDy = −Dxy
∂C

∂x
−Dyy

∂C

∂y
, (S5)

jDz = −Dzz
∂C

∂z
. (S6)

In writing Eqs. (S4) - (S6), we neglected the terms containing Dxz and Dyz, since those
components of the diffusion tensor are negligible in comparison with Dxx, Dxy, Dyy, and
Dzz (see figure S3). The diagonal components of D have the same order of magnitude.
The off-diagonal component Dxy is several orders of magnitudes smaller than the diagonal
components at low Em. However, at high Em the magnitude of Dxy approaches that of the
diagonal components, especially in the case of the short-range model (see figure S13 for
comparison between Dxx and Dxy).

Nevertheless, the off-diagonal component makes a negligible contribution to the y-component
of the diffusive flux even at high Em because gradients of the polymer concentration C in
the x- and y-direction differ by two orders of magnitude. The length-scale in the x-direction
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Figure S13: Ratio of componentsDxx (plots (a), (b)) andDxy (plots (c), (d)) of the diffusivity
tensor and the electrophoretic velocity µE

0 E. The data were obtained by the Brownian
dynamics simulations in the simple-shear flow using the long-range model (plots (a),(c)) and
the short-range model (plots (b),(d)).
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is O(104) (see figures 7, S11, and S12), whereas the length-scale in the y-direction is O(102)
(see figure 6). Therefore,

∂C

∂x
= O(10−4)C and

∂C

∂y
= O(10−2)C (S7)

and the first term in Eq. (S5) is negligible in comparison with the second term, i.e.

jDy ≈ Dyy
∂C

∂y
. (S8)

It remains to demonstrate that the diffusive flux in the x-direction is negligible in com-
parison with the electrophoretic flux

jEx = µE
0 EC. (S9)

Using Eq. (S7), the ratio of these fluxes can be estimated as

∣

∣

∣

∣

jDx
jEx

∣

∣

∣

∣

= O(10−4)
Dxx

µE
0 E

+O(10−2)
Dxy

µE
0 E

, (S10)

The ratiosDxx/µ
E
0 E andDxy/µ

E
0 E are shown in figure S13. It is evident thatDxx/µ

E
0 ≤ O(1)

and |Dxy|/µ
E
0 ≤ O(10−2). Therefore, |jDx /j

E
x | ≤ O(10−4) and jDx can be neglected in the

mean-field model.

S4.3.3 Direct Validation for the 3D flow

The mean-field model for the 3D flow is validated by comparison with the Brownian dynamics
simulations in figure S14. The mean-field model predictions (dashed lines) are in excellent
agreement with the Brownian dynamics results (solid lines).

S4.4 Effect of Electric Field Strength and Mean Shear Rate on

the Entrance Length

The entrance length L required to establish a developed profile can be estimated as the ratio
of the mean velocities in the longitudinal and transverse directions,

L ∼
ū∞

x + µE
0 E

V̄c,y

(S11)

Here, u∞

x is the ambient flow velocity, µE
0 E is the electrophoretic velocity, Vc,y is the mean

electro-hydrodynamic velocity in the transverse direction, and the bar denotes averaging
over the channel cross-section. The electro-hydrodynamic velocity Vc,x in the flow direction is
neglected in the numerator of Eq. (S11) since Vc,x << µE

0 E. Furthermore, the estimate (S11)
neglects variation of the flow and electro-hydrodynamic velocities across the channel, as well
as effects of the Brownian diffusion and the electro-hydrodynamic dispersion. Nevertheless,
it allows us to qualitatively explain the simulation results discussed below.
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Figure S14: Validation of the mean-field model for the 3D pressure-driven flow. This figure
compares σ(x) for this flow obtained by the Brownian dynamics simulations (solid lines) and
the mean-field model (dashed lines) at γ̄ = 0.146 using (a) long-range and (b) short-range
electro-hydrodynamic models. The inset in plot (b) shows a magnified area corresponding
to developed profiles for ES = 6.15, 12.30, and 16.40.

We consider simulations of the mean-field model in the two-dimensional geometry; the
initial condition for these simulations is the uniform polymer distribution. The entrance
length L computed from these simulations is defined as the distance required to reduce
∆σ(x) by 90%, i.e.

∆σ(L) = 0.1∆σ(0). (S12)

Here, ∆σ(x) = σ(x)− σ∞ is the difference between the profile width σ(x) at position x and
the fully developed profile width σ∞.

Effects of the electric field strength on the entrance length are shown in figure S15. The
long- and short-range electro-hydrodynamic models yield qualitatively similar dependence
of L on the electric field strength Em. This is explained by the estimate (S11): since ū∞

x

is independent of Em and both considered electro-hydrodynamic models predict that V̄c,y is
approximately proportional to Em (see figure S4), Eq. (S11) yields

L ∼ A+
B

Em
, (S13)

where A and B are independent of Em. Results of a least-squares fit of the simulation data
to Eq. (S13) are shown by dashed lines in figure S15. It is evident that Eq. (S13) is in good
agreement with the entrance length obtained from the simulations.

Effects of the shear rate on the entrance length are shown in figure S16a. Both the long-
and short-range models predict that L increases as the mean shear rate γ̄ increases. This is
consistent with the estimate (S11). To verify this, we note that the electrophoretic velocity
µE
0 E is negligible in comparison with the mean flow velocity ū∞

x = γ̄H/3 for the systems
shown in figure S16: for the considered range of γ̄, ū∞

x ranges from 14 to 207, whereas
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Figure S15: Effect of the strength of the electric field Em on the decay length L predicted
by the long-range (LR) and the short-range (SR) electro-hydrodynamic models. The shown
data are obtained from the mean-field model simulations of a pressure-driven flow in a two-
dimensional channel at the mean shear rate of γ̄ = 0.146. The dashed lines show results of
a least-squares fit of the simulation data to Eq. (S13).

the largest electrophoretic velocity for the systems considered in figure S16 is µE
0 E = 6.

Therefore, Eq. (S11) can be approximated as

L ∼
ū∞

x

V̄c,y

=
γ̄H

3V̄c,y

(S14)

for sufficiently large γ̄.
Dependence of the average electro-hydrodynamic velocity V̄c,y on γ̄ is shown in fig-

ure S16b. For the short-range model, V̄c,y ∝ γ̄0.6. Substituting this into Eq. (S14) yields
L ∝ γ̄0.4, which is in a reasonable agreement with the simulations results shown in figure S16a
(L ∝ γ̄0.6 for ES = 0.21 and L ∝ γ̄0.3 for ES = 1.58).

The long-range model exhibits a non-monotonic dependence of the transverse velocity
Vc,y(γ) on the shear rate γ, as discussed in section 3.1 of the paper. Therefore, the transverse
velocity V̄c,y averaged over the channel width also exhibits a non-monotonic dependence on
the mean shear rate γ̄, as shown in figure S16b: V̄c,y(γ̄) approaches a maximum at γ̄ ≈ 0.25
and follows the power law V̄c,y ∝ γ̄−0.3 for γ̄ ≥ 0.25. Therefore, Eq. (S14) yields L ∝ γ̄1.3

for γ̄ ≥ 0.25. This is in good agreement with the mean-field simulations results shown in
figure S16a (L ∝ γ̄1.6 for EL = 0.16 and L ∝ γ̄1.5 for EL = 1.19).

In summary, dependence of the entrance length L on the mean shear rate γ̄ can be
explained by the simple approximation (S11). The long-range model exhibits a stronger
dependence of L on γ̄ than the short-range model due to the qualitative difference in the
effect of the shear rate on the mean transverse velocities predicted by these models (see
figure S16b).
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Figure S16: (a) Effect of the mean shear rate γ̄ on the decay length L predicted by the
long-range (LR) and the short-range (SR) electro-hydrodynamic models. The shown data
are obtained from the mean-field model simulations of a pressure-driven flow in a two-
dimensional channel. (b) Dependence of the transverse velocity V̄c,y averaged over the channel
width on the mean shear rate γ̄. The dashed lines show results of least-squares fits of the
data to the power law. For the long-range model, the fits were performed for γ̄ ≥ 0.25.
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