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S. Scale analysis 

From the literature [1], the length scale for salt-finger cells (d) in binary alloy solidification, is 

formulated as Eq. (S.1). 
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where SD  is the compositional diffusivity (m2/s),  is the kinematic viscosity (m2/s), g is the 

gravitational acceleration (m/s2), h is the height of the liquid, S  is the compositional 

expansion coefficient in the binary system, S is the composition difference at the onset of 

convection (wt %) in the binary system. In the binary mixture, the scaled diameter of salt-finger 

or plume (d from Eq. (S.1)) is inversely proportional to 1/4( )S S  , but in ternary systems, the 

proportionality elements are not known in cases where two different compositional expansion 

coefficients and composition differences are experienced during the convection. For studying 

such systems, a linear stability analysis has been performed to validate the present experimental 

studies. A stabilizing temperature gradient inhibits the onset of convection in a fluid that is 

subjected to a positive composition gradient in the multi-component system. The onset of 

instability may occur as an oscillatory motion due to the stabilizing effect of the thermal. These 

results are obtained from linear stability theory in two-dimensional flow and are described 

below. 

S.1 Formulation of the problem for 2-D linear stability analysis 

A fluid of height h is subjected to bottom cooling. The temperatures are given by T = Tm, at y 

= 0 and T = Tm+ΔT at y = h. The corresponding values of the compositions are S1 = Sm1, S2 = 

Sm2 at y = 0 and S1 = Sm1+ΔS1, S2 = Sm2+ΔS2 at y = h (figure S1). For the linear stability analysis, 
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temperature and composition can be divided into two parts, (i) the linear part given above and 

(ii) the part due to convective redistribution, and it is formulated in Eq. (S.2). 

where T is temperature, S1, and S2 are compositions of the first and second components, and 

subscript m indicates the mean value. The boundary conditions are taken to be of no flux type 

for heat and compositions at the top and bottom. Furthermore, this analysis is restricted to two-

dimensional motions. 

 

Figure S1: Schematic of the analytical problem description. 

S.2 Governing equations 

The governing equations of momentum, mass, temperature, and composition are used to 

assume that the flow is incompressible. The Boussinesq term is incorporated in momentum 

equations to represent natural convection arising from compositional gradients and is given by: 

where V is velocity vector ((u, v) are velocities in x and y direction), t is the time, g is the 

gravitational acceleration,  p is the pressure,   is the kinematic viscosity. The conservation of 

mass, 
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The conservation of heat, 

The conservation of compositions of the two species is given by, 

  is the body source term accounting for the thermal and compositional dependence of the 

liquid density, and is given by the linearized equation: 

In the above equations, 
1 2

, ,S S    are the kinematic diffusivity of temperature and 

compositions of S1 and S2, respectively; m  is the mean density of the system. The quantities 

1 2, ,   (> 0) can be defined as 

S.3 Non-dimensionalization of governing equations and other parameters 

Introducing the stream function ( ) to transform the governing equation to non-dimensional 

forms. Stream function is defined as Eq. (S.4) 

Other parameters in governing equations are non-dimensioned as Eq. (S.5) 

From the Eq. (S.4 and S.5), the non-dimensional governing equation can be written as Eq. 

(S.6). For the simplicity ' '

1 2', ', ', ', ', ,t x y T S SV  is written as 1 2, , , , , ,t x y T S SV . Non-dimensional 
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(S.3e) 
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momentum (which is also known as vorticity equation), temperature, and compositions 

equations, and other parameters are: 

 The boundary condition in non-dimensional form formulates in Eq. (S.7) 

S.4 Linear stability analysis 

The rightmost bracketed term is neglected for the linear stability analysis from Eqs. S.6(a-d). 

From boundary conditions (Eq. (S.7)), the solution of 1 2, , ,T S S  from the non-dimensional 

governing equations can be written as 

where a  and n  are wavenumbers in the horizontal and vertical direction, and q is the 

perturbation rate coefficient. The perturbation rate coefficient (q) can be a complex number in 
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which the real part stands for the perturbation growth rate, and the imaginary part stands for 

the oscillating time behaviour of perturbation. Substituting Eq. (S.8) in Eq. (S.6 and S.7), we 

get a characteristic equation (Eq. (S.9)) that provides a condition to solve these equations. 

where 2 2 2 2( )k a n= + . Using marginal stability analysis at the initiation of convection and 

in the absence of thermal convection, Eq. (S.9) can be simplified as Eq. (S.10)  

Eq. (S.10) can be interpreted in two ways based on Lewis number in the ternary system: Case 

I: where Lewis numbers ( 1 2  ) are different where these relations reach a minimum at 2a = 

0.5 and 2n = 1 in Eq. (S.10) and it is simplified as Eq. (S.11). 

From this, it can be concluded that the effective compositional Rayleigh number in the ternary 

system is proportional to
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Case II: Both components (S1, S2) have the same Lewis number ( 1 2  = = ), and this can be 

written as Eq. (S.12). 

This analysis predicts that the effective compositional Rayleigh number in the ternary system 

is proportional to 1 1 2 2( )

S
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.  

In the ternary system, the scale of salt-finger can hence be evaluated, and this can be formulated 

as Eq. (S.13, and S.14) with the help of Eq. (S.1, S.11, and S.12). 
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If the compositional expansion coefficient of the first component is very large concerning that 

of the other 1 2( )  , then the diameter of the salt-finger can be estimated to be only driven 

by the second component. 
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Case (i) Lewis numbers ( 1 2  )are different 
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Case (ii) Lewis numbers ( 1 2 = ) are the same 
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