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This supplementary information is divided into four distinct sections. In §S1, we assess
the “Quasi-steady state” assumption undertaken in our analysis. This section also includes a
discussion on the added mass effect in relation to eqn. (4.13) in the manuscript. In §S2, the
solution convergence is tested. This justifies the truncation of the infinite series that appear
as the solutions to the stream function and other related quantities, as outlined in §4.1 of the
manuscript. §S3 is dedicated to the influence of the parameter k on the settling velocity of the
drop. Finally, in §S4, flow visualization in and around the drop through streamline plots at
various stages of settling are presented. §S4 also contains a brief discussion (in continuation to
figure 5 in the manuscript) on how the surfactant gets redistributed around the drop interface,
when it is very close to the wall.

S1 Assessment of the Quasi-Steady flow assumption

S1.1 The time scales of the problem

We have outlined in §2 of the manuscript that the drop motion has been assumed to be quasi-
steady. This assumption plays a key role in determining the net hydrodynamic drag acting on
the drop. At its core, the quasi-steady approximation says that the viscous stresses can quickly
readjust in response to any other changes in the flow, which is why the temporal term in the
LHS of the Navier-Stokes equation can be dropped. This can be better understood from the
non-dimensional governing equation for fluid motion, expressed as:

Re

(
1

S

∂u

∂t
+ u ·∇u

)
= ∇2u−∇p (S1)

where Re is the Reynolds number (Re = Uca/ν, see §3 in the manuscript) and S = t0/ta
(also called the Strouhal number) is the ratio of the char. time scale of the flow to advection
time scale (a/Uc). In the present scenario, t0 = ta is the most appropriate choice and hence
S = 1. It is evident that the inertial terms in the eqn. (S1) may be neglected when Re � 1,
which indicates that the flow is dominated by viscous stresses [1]. This assumption remains a
cornerstone in many seminal studies on droplet and particle dynamics [2, 3] in viscous fluids.
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Figure S1: Phase plot of settling (ḣ vs h) with two different initial conditions for velocity: i) h = 10, ḣ = 0
(represented by solid curves), ii) h = 10, ḣ = Uo (represented by dashed red curves), for β = 0, 0.6, λ = 0.1 and
k = 3.

S1.2 Added mass effect and the effect of initial acceleration

In case of large accelerations, the temporal derivative in the Navier-Stokes equation (the ∂u/∂t
term) may be retained, despite the Reynolds number being small. This leads to a modification
in the force acting on the particle. For a solid spherical particle of radius a, moving in a
straight line with arbitrary velocity u(t) in a fluid with density ρ and kinematic viscosity ν, the
hydrodynamics drag force has the form [4, 5]:

F = 2πρa3
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)
(S2)

The second term inside the bracket is usually termed as the “Added mass effect”, while the first
term is the usual Stoke’s drag. Clearly, the second and the third terms become important, when
the velocity of the particle changes rapidly, in the viscous flow limit. Such scenarios usually
occur for gas bubbles moving through liquids [6], because of its negligible mass and thus taking
into account added mass makes sense there. On the contrary, in our study, quasi-steady flow
is considered and as a result the temporal derivative is neglected here (see eqn. (3.6) in the
manuscript and eqn. (S1) above) on account of the fact that the char. time scale here is
precisely equal to the advection time scale i.e. tc = ta = a/Uc, making S = 1. As a result,
when Re � 1, one can drop the entire LHS in eqn. (S1). Therefore, consideration of added
mass effect, like that in (S2) would be incompatible with the quasi-steady assumption.

Further, large initial acceleration will not play an important role in the present scenario
since the densities of droplet and surrounding fluids are close (ρ2/ρ1 = 1.1). To verify this, we
have now analyzed whether the initial acceleration has any significant effect on droplet motion.
This may be done by solving eqn. (4.13) in the manuscript using two different sets of initial
conditions. The first set of solutions has the initial conditions, h = 10 and ḣ = 0 at t = 0, while
the second set satisfies, h = 10, ḣ = U0, at t = 0, where U0 is the steady state velocity of the
drop away from the wall. Therefore, in the first case, the drop will accelerate initially to reach
the steady state velocity away from the wall, following which it will slow down. On the other
hand, in the second case, the drop will not undergo any initial acceleration, since it was already
settling at the steady state velocity. By comparing these two solutions, we can check whether
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the initial acceleration plays an important role in governing the droplet’s motion. Figure S1
shows this comparison as a phase plot (ḣ vs h has been plotted here) for two different values of
β (0 and 0.6), while values of other relevant parameters have been mentioned in the caption. It
can be observed that both the initial conditions imposed on ḣ result in the same phase plots,
therefore confirming our earlier assertion that the initial acceleration is not a key factor here
and hence the added mass effect can be safely neglected. At the same time, figure S1 also
confirms the validity of the quasi-steady state assumption, central to the analytical solutions
written in the manuscript.

S2 Solution Convergence

The solution for the stream functions, surfactant concentration gradient, drop velocity and
deformation are represented in terms of infinite series of Legendre or Gegenbauer polynomials
in our analysis (see §4 of the manuscript). Thus determining the convergence criteria for these
infinite series becomes an important step in the solution procedure. Since the solution for the
droplet settling velocity plays a key role in all other aspects of the problem, it is justified to
focus on how the values (numerical) of U converge at various distances from the wall. We shall
particularly emphasize on the scenario when the drop is very close to the wall (i.e. h → 1 or,
h − 1 � 1), because series convergence is likely to be poor there. As such, the expression for
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Figure S2: U (droplet settling velocity) vs h (normalized distance of the drop centre from the wall) for different
truncation limits (N). Other relevant parameters are: β = 0.5, λ = 0.1 and k = 3. The inset shows magnified
plot very close to the wall (i.e. h→ 1).

the instantaneous settling velocity of the drop is given as (see eqn. (4.12) in the manuscript):

U =
1

π 2
√

2c
∑∞

n=0 (An +Bn + Cn +Dn)
(S3)

Where, c is a constant of bipolar coordinate system (defined in §4 of the manuscript) and
An, Bn, Cn, Dn are the coefficients in the infinite series for stream functions, found by solving
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the coupled system of infinite linear equations (see §A.1 in the Appendix A of the manuscript).
In practice, the summation in eqn. (S3) has to be truncated at an upper limit, say, N . After
truncation, eqn. (S3) may be written as:

U =
1

2
√

2πc
∑N

n=0 (An +Bn + Cn +Dn)
(S4)

Convergence of the series may be checked by choosing successively larger N -values and
observe the resulting change in U . Figure S2 plots the droplet settling velocity (U) vs distance
of the droplet center from the wall (h) for different choices of truncation limits (N) of the series
given in eqn. (S4). One can clearly observe that the error in the solution for U consistently
gets smaller as N is increased; this remains true for all values of h, i.e., the drop centre height.
In other words, the changes in the numerical values of U become imperceptible, when N ≥ 15.
The inset depicts the convergence very close to the wall and again the trends described above
are repeated there. In view of the above, in the manuscript, we have decided to truncate the
series in eqn. (S3) after N = 15 terms.

S3 Effect of the parameter k on surfactant concentration

The primary focus of our analysis is to assess the influence of surfactant on the flow dynamics as
well as motion and deformation of the drop. The extent of influence of the surfactant depends
on the following parameters: (a) the surface tension coefficient β, (b) surfactant Péclet number,
Pe, which in turn depends on the factor k (defined in §3 of the manuscript). The effect of β is
analyzed in the manuscript (see §5 in the manuscript).
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Figure S3: Plot of droplet settling velocity (U , found from eqn. (S3)) as a function of k for four different
locations of the drop center, given by: h = 6, 4, 2.5, 1.25. Other relevant parameters are given by λ = 0.1 and
β = 0.1.

The effect of varying k can be observed from figure S3, where droplet settling velocity (U ,
from eqn. (S3)) is plotted as a function of k, at four different locations of the drop center,
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given by: h = 6, 4, 2.5, 1.25. Other relevant parameters are mentioned in the caption. From the
figure it is clear when k increases, the settling velocity decreases at all distances from the wall.
Increasing k augments the Marangoni stress contribution through the factor ω (= βk/(1− β),
see eqn. (4.5c) in the manuscript), which enhances the drag force on the drop, resulting in a
decrease in the settling velocity. Note that these trends of U vs k are almost identical to the U
vs β trends depicted in Fig. 3 in the manuscript. This is expected because, increasing β, keeping
k constant, augments the effect of surfactants on surface tension, which ultimately results in
increased drag. On the other hand, if one increases k by keeping β constant, the deviation in
the surfactant concentration itself (Γ1, see eqn. (3.11) in the manuscript) increases, which also
enhances the variation in surface tension, thus leading to a very similar increase in the drag
force.

S4 Physical perspectives on film drainage

S4.1 Surfactant distribution close to the wall

The effect of the bounding wall on the redistribution of surfactants has been discussed in
relation to figure 5 in the manuscript. From that figure, it was observed that the surfactant
concentration tends to become more uniform as the drop approaches the wall. At the same
time, the deviation in Γ around its equilibrium value becomes asymmetric with relatively larger
depletion near the southern pole. These trends are expected to continue as the drop settles
towards the wall. During the film drainage (h→ 1), the interface velocity becomes very small
owing to a rapid increase in the hydrodynamic drag. As a result, it is expected, that Γ will
be very close to 1 almost everywhere on the interface, while the foresaid asymmetry will also
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Figure S4: Plot of Γ vs θ, for three different locations of the drop, h = 1.1, 1.01 and 1.001. Other parameters
are: β = 0.1, Ca = 0.3, k = 3 and λ = 0.1. Here, θ is the polar angle measured in a spherical coordinate
system fixed at the drop center.

prevail. This is exactly what is observed in figure S4, where Γ as a function of polar angle θ
has been plotted at three different locations of the drop, all very close to the wall. Values of
other relevant parameters have been mentioned in the caption. Notice that at h = 1.001, the
surfactant concentration is uniform throughout the drop interface, except near the south pole.
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Figure S5: Streamline patterns emerging from the settling of the drop (with surfactant) in both the fluids have
been shown here. We plot the streamlines at four different locations of the drop, given by (a)h = 6, (b) h = 4,
(c) h = 2.5, (d) h = 1.25. The drop interface has been depicted with a thick red line. Values of other relevant
parameters are: λ = 1, k = 3, β = 0.9.

S4.2 Flow pattern at various stages of settling

The flow dynamics in and around the drop as it settles towards the wall can be better visualized
from streamline plots. To this end, in figure S5 (a) - (d), we showcase the streamlines in
both the fluids for four different locations of the drop, given by h = 6 in (a), h = 4 in (b),
h = 2.5 in (c) and h = 1.25 in (d), using eqns. (4.3) & (4.4) in the manuscript. Presence of
surfactant is taken into account here with β = 0.9 and other relevant parameters have been
mentioned in the caption. Note that in fig. S5, the drop surface has been shown by a red
line. Observing all four subfigures, the effect of the bounding wall on the overall nature of the
flow becomes clear. In subfigure (a), the influence of the wall on the flow around the drop is
minimal as it is very similar to the flow in an unbounded medium. At this point, the wall,
being impenetrable, mainly pushes the surrounding fluid (fluid-1) sideways as it rushes towards
the wall because of the motion of the drop. As the drop nears the wall (see subfig. (b)), the
same flow patterns persist, although now the streamlines become more curved, but still remain
open, close to the drop. The aforementioned curvature of the streamlines becomes extreme at
h = 2.5 (see subfig. (c)) as the outer fluid immediately turns sideways just below the drop.
Within the region explored in the fig. S5(c), the streamlines still remain open. However, at
h = 1.25 (see subfig. (d)), since the drop is very close to the wall, the extremely curved flow
pathways give away to closed streamlines in the form of recirculation rolls. This, of course,
is qualitatively different from the previous three subfigures where only open streamlines were
visible. Essentially, the flow patterns shown in subfigure (d) are precursor to the final stages
of settling, where film drainage takes place. It may be noted from this subfigure that the final
traces of fluid-1 residing between the drop and the solid surface begins to squeeze out as the
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drop nears the wall. The final stages of settling and the associated effect of the surfactant
are best captured through the variations in film thickness (∆h), as it drains out from beneath
the drop. A detailed account of this phenomena has been discussed in relation to figure 8 in
the manuscript - see §5.3 therein. Further note that the streamline patterns inside the drop
essentially remain unchanged at all four locations, as the flow therein is mainly dominated by
the straight downward motion of the drop itself.
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