
On the inverse cascade and flow speed scaling behavior in rapidly rotating Rayleigh-Bénard convection: Supplementary Material

S. Maffei^{1,3}†, M. J. Krouss¹, K. Julien² and M. A. Calkins¹

¹Department of Physics, University of Colorado, Boulder, USA
 ²Department of Applied Mathematics, University of Colorado, Boulder, USA
 ³School of Earth and Environment, University of Leeds, Leeds, UK

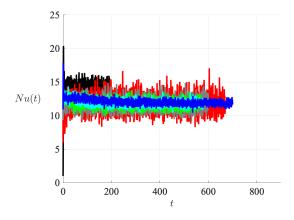


Figure 1: Time-series of simulations ($\widetilde{Ra}=40, Pr=1$) and different horizontal domain size in terms measured in amounts of critical wavelengths. The black curve represents a calculation with horizontal size $10\lambda_c \times 10\lambda_c$ where the variable $\langle \psi \rangle$ has been set to zero at the beginning of every timestep.

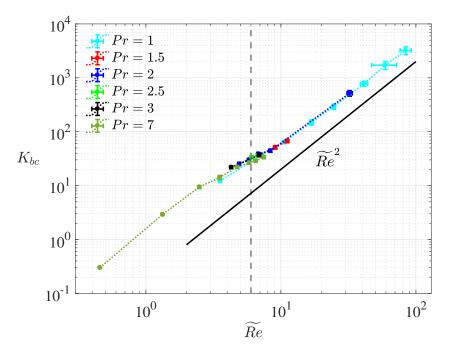


Figure 2: Time-averaged baroclinic kinetic energy, K_{bc} , as a function of the time-averaged Reynolds number \widetilde{Re} and Pr. The black line, indicating the \widetilde{Re}^2 behavior is added for reference.