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in the primary article “Capillary-Flow Dynamics in Open Rectangular Microchannels”.

S1 Governing Equations

We consider mass and momentum conservation of an incompressible Newtonian liquid with

constant density, given by

∇̃ · ũ = 0, (S1a)

ρ

[
∂ũ

∂t̃
+ (ũ · ∇̃)ũ

]
= −∇̃p̃+ µ∇̃2ũ + ρg̃, (S1b)

where ũ = (ũ, ṽ, w̃) is the velocity field in Cartesian coordinates, p̃ is the liquid pressure, and

g̃ = (g̃x, g̃y, g̃z) is the gravitational acceleration. The no-slip and no-penetration conditions

are applied along the solid walls as

ũ = 0. (S2)

The boundary conditions for the normal and tangential stresses at the liquid-air interface

h̃(x̃, z̃, t̃) are given by

[[n · T̃ · n]] = σ(∇̃s · n), (S3a)

[[t1 · T̃ · n]] = 0, (S3b)

[[t2 · T̃ · n]] = 0. (S3c)

Here, T̃ = −p̃I+µ[∇̃ũ+(∇̃ũ)T ] is stress tensor, I is the identity tensor, ∇̃s = ∇̃−n(n·∇̃)

is the surface gradient operator, n is the unit outward normal vector, and t1, t2 are the two
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tangent vectors at the interface in the transverse and axial directions, respectively. These

vectors are given by

n =
1

[1 + (∂x̃h̃)2 + ((∂z̃h̃)2]1/2
(−∂x̃h̃, 1,−∂z̃h̃), (S4a)

t1 =
1

[1 + ((∂x̃h̃)2]1/2
(1, ∂x̃h̃, 0), (S4b)

t2 =
1

[1 + ((∂z̃h̃)2]1/2
(0, ∂z̃h̃, 1). (S4c)

Equations (S1a) and (S1b) are rendered dimensionless using the following scalings

(x̃, ỹ, z̃) = (Hx,Hy, Lz), t̃ =
L

U
t, p̃ =

µU

εH
p,

(ũ, ṽ, w̃) = (εUu, εUv, Uw), ε =
H

L
, U =

2εσ

µ
.

Additionally, the gravitational acceleration vector is scaled as (g̃x, g̃y, g̃z) = (ggx, ggy, ggz)

where g is the magnitude of the gravitational acceleration. The dimensionless parameters

that arise are the Reynolds number Re = ρUH/µ (ratio of inertial to viscous forces), the

capillary number Ca = µU/εσ (ratio of viscous to surface-tension forces), and the Bond

number Bo = ρgH2/σ (ratio of gravitational to surface-tension forces).

Using these scalings, (S1a) and (S1b) become

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (S5a)

ε3Re

[
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

]
= −∂p

∂x
+ ε2

[
∂2u

∂x2
+
∂2u

∂y2
+ ε2

∂2u

∂z2

]
+
Bo

Ca
gx, (S5b)

ε3Re

[
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

]
= −∂p

∂y
+ ε2

[
∂2v

∂x2
+
∂2v

∂y2
+ ε2

∂2v

∂z2

]
+
Bo

Ca
gy, (S5c)

εRe

[
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

]
= −∂p

∂z
+

[
∂2w

∂x2
+
∂2w

∂y2
+ ε2

∂2w

∂z2

]
+

Bo

εCa
gz. (S5d)

In the limits where ε2 � 1, εRe� 1, and Bo/Ca� ε, the above equations reduce to

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (S6a)

∂p

∂x
=
∂p

∂y
= 0, (S6b)

∂p

∂z
=
∂2w

∂x2
+
∂2w

∂y2
. (S6c)
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The boundary conditions for the normal (S3a), transverse tangential (S3b), and axial tan-

gential (S3c) stresses at the free surface reduce to

p = −Ca−1 ∂2xh

[1 + (∂xh)2]3/2
= −Ca−1

[
∂xh

[1 + (∂xh)2]1/2

]
x

, (S7a)

0 = [1− (∂xh)2]

(
∂u

∂y
+
∂v

∂x

)
+ 2∂xh

(
− ∂u

∂x
+
∂v

∂y

)
− ∂zh

(
∂w

∂x
+ ∂xh

∂w

∂y

)
, (S7b)

0 =
∂w

∂y
− ∂xh

∂w

∂x
. (S7c)

Based on (S6b) the O(1) term in p is only dependent on z and t, and thus the leading-order

curvature term (term in brackets on far right of (S7a)) is actually independent of x and must

only depend on z and t. The derivation of (S6) and (S7) can also be seen in Yang & Homsy

(2006) and White & Troian (2019), who considered V-shaped channel cross sections.

Up to this point no assumption has been made regarding the channel cross-sectional

geometry. Here, we consider two geometries for the channel cross section: (a) rectangular

(figure 5a) and (b) V-shaped (figure 5b). Using these two geometries we can describe all the

liquid cross sections in figures 4a and 4b in terms of the liquid height on the solid wall a(z, t)

and the contact angle θ(z, t). The meniscus-deformation (a = 1) and meniscus-recession

(θ = θ0) regimes are described using the rectangular cross section, while the corner-transition

(a = 1) and corner-flow (θ = θ0) regimes are described using the V-shaped cross section.

Each cross-sectional geometry requires three additional boundary conditions to obtain

expressions for p(z, t) and h(x, z, t): the contact-line location on the solid wall, a symmetry

condition, and the definition of the contact angle θ. For the rectangular channel cross section

(figure 5a) these boundary conditions are

h = a at x = 1/2λ, (S8a)

∂xh = 0 at x = 0, (S8b)

n · k = cos θ at x = 1/2λ, (S8c)

where k = (−1, 0, 0) is the inward normal to the sidewall. Retaining O(1) terms, (S8c)

reduces to ∂xh = cot θ at x = 1/2λ.

Similarly, for the V-shaped channel cross section (figure 5b) these boundary conditions

are

h = a cos β at x = a sin β, (S9a)
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∂xh = 0 at x =
a sin β

2

(
1− cos(θ0 + π/2− β)

cos(θ + β)

)
, (S9b)

n · k = cos θ at x = a sin β, (S9c)

where β = arctan(cos θ/ cos θ0) (see §S3) and k = (− cos β, sin β, 0). Retaining O(1) terms,

(S9c) reduces to ∂xh = cot(θ + β) at x = a sin β.

Expressions for p(z, t) and h(x, z, t) as a function of the dimensionless liquid height a(z, t)

on the side walls and the contact angle θ(z, t) are obtained for each regime in figure 4, as

described below. Equation (S7a) is integrated twice with respect to x and the boundary

condition sets (S8) and (S9) are used to obtain the following O(1) expressions

p = −λ cos θ(z, t)

h = 1 +
tan θ(z, t)

2λ
−
[

1

4λ2 cos2 θ(z, t)
− x2

]1/2
 meniscus deformation, (S10a)

p = −λ cos θ0

h = a(z, t) +
tan θ0

2λ
−
[

1

4λ2 cos2 θ0
− x2

]1/2
 meniscus recession, (S10b)

p = −cos θ0 − sin θ(z, t)

2

h =
cos θ(z, t)

cos(θ(z, t) + β)
−
[(

sin β

cos(θ(z, t) + β)

)2

− x2
]1/2

 corner transition, (S10c)

p = −cos θ0 − sin θ0
2a(z, t)

h =
a(z, t) cos θ0

cos(θ0 + π/4)
−
[(

a(z, t) sinπ/4

cos(θ0 + π/4)

)2

− x2
]1/2

 corner flow, (S10d)

where θ0 is the equilibrium contact angle and λ is the channel aspect ratio. Equations (S10a)

and (S10b) were also used by Tchikanda et al. (2004) and Nilson et al. (2006). A similar

expression to (S10c) can be found in Weislogel & Nardin (2005). The expressions in (S10d)

were also used by Romero & Yost (1996), Weislogel & Lichter (1998), Nilson et al. (2006),

Yang & Homsy (2006), and White & Troian (2019). We note that to reconstruct free-surface

profiles, the height profiles h in (S10c) and (S10d) corresponding to figure 5b must be rotated

by angles β = arctan(cos θ/ cos θ0) and β = π/4, respectively, to match the orientation of

the channel cross section in figures 4a and 4b.
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S2 Velocity Field

Here, we describe the method for calculating cross-sectional-averaged dimensionless velocities

w̄D(s), w̄T (s), and w̄C(s) seen in (3.14). To calculate w̄D(s) we rescale the velocity w in (S6c)

with −∂p/∂z. This reduces (S6c) to

− 1 =
∂2w′

∂x2
+
∂2w′

∂y2
(S11a)

subject to

w′ = 0 at solid boundaries (S11b)

and

0 =
∂w′

∂y
− ∂xh

∂w′

∂x
at y = h, (S11c)

where h is given by (S10a) and w′ is the rescaled velocity. The cross-sectional-averaged

dimensionless velocity w̄D(s) is defined as

w̄D =
1

A

∫
A

w′ dA. (S12)

Equation (S11a) is solved subject to boundary conditions (S11b) and (S11c). Equation (S12)

is then used to obtain w̄D(s). Note that the dependence of w̄D(s) on s ∈ [1, sD] is obtained

by varying the contact angle θ ∈ [π/2, θ0] to create different cross sections characterized by

h (figure 5a).

To calculate w̄T (s) and w̄C , we rescale the velocity w in (S6c) with −a2∂p/∂z, and x, y

with a. This reduces (S6c) to

− 1 =
∂2w′

∂(x′)2
+

∂2w′

∂(y′)2
(S13a)

subject to

w′ = 0 at solid boundaries (S13b)

and

0 =
∂w′

∂y′
− ∂h′

∂x′
∂w′

∂x′
at y = h′. (S13c)

The rescaled interface height is h′ = h/a, where h is given by (S10c) and (S10d) for the

corner-transition and corner-flow regimes, respectively, and x′ and y′ are the rescaled x

and y coordinates. The cross-sectional-averaged dimensionless velocities w̄T (s) and w̄D are

defined as

w̄i =
1

A′(θ, θ0)

∫
A′(θ,θ0)

w′ dA′, for i = T,C, (S14)
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where A′(θ, θ0) = B̂(θ, θ0)/(cos θ0 − sin θ)2 for the corner-transition regime and A′(θ =

θ0, θ0) = 2Â(θ0)/(cos θ0 − sin θ0)
2 for the corner-flow regime (see (3.12c) and (3.12d)).

Equation (S13a) is solved subject to boundary conditions (S13b) and (S13c). Equa-

tion (S14) is then used to obtain w̄T (s) and w̄C . Note that the dependence of w̄T (s)

on s ∈ [sT , sC ] is obtained by varying the contact angle θ ∈ [θT , θ0] to create different

cross sections characterized by h (figure 5b). Because the rescaled cross-sectional area

A′(θ0, θ0) = Â(θ0)/(cos θ0 − sin θ0)
2 is constant in the corner-flow regime, (S13a) only needs

to be solved once to obtain w̄C for a given θ0.

S3 Interior angle β

Here, we derive the expression relating β (found in figure S1 and (S10c)) to the equilibrium

contact angle θ0 at the channel bottom and the contact angle θ on the channel side wall as

depicted in figure S1. Initially, we focus on 4OAB and 4OCB to obtain

γ1 = π/2− β − θ and γ2 = β − θ0. (S15)

We then consider 4OAD and 4OCE where

sin γ1 =
AD

OA
=
a sin β

r
and sin γ2 =

CE

OC
=
a0 cos β

r
. (S16)

Here, r is the radius of the circular-arc meniscus. The expressions in (S16) are then used to

relate the contact line positions a0 and a for the channel bottom and side wall through

a0 =
a tan β sin γ2

sin γ1
. (S17)

Next, we consider OB where

OE + EB = OD +DB ⇔ a0 cos β

tan γ2
+ a0 sin β =

a sin β

tan γ1
+ a cos β. (S18)

Finally, we use (S15) and (S17) in (S18) to obtain

β = arctan

(
cos θ

cos θ0

)
. (S19)

A similar expression can be found in Weislogel & Nardin (2005).
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Figure S1: Cross-sectional schematic for corner-transition (a = 1) and corner-flow (θ = θ0)

regimes.
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