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Supplementary material: Grid-size checks and wave packet behaviour

Whilst the results presented in the paper show excellent agreement with those predicted
by the analytical solution especially for the Tollmien-Schlichting wave part of the signal,
adequately resolving the downstream travelling wave packet part of the signal created
many difficulties.
In figures 14-17 of the paper it can be observed that over the full range of X there is a

wave packet with very large amplitude which develops ahead of the Tollmien-Schlichting
wave and moves downstream. The same wave packet behaviour is present in computations
both with and without localised heating, and as noted in the paper, only present for the
pressure, displacement and velocity fields. However for the temperature perturbation
shown in figure 12 no such wave packet is present.
In order to understand the nature of the wave packet behaviour grid size checks were

performed. In all the figures we have confined our attention to the problem without
localised heating. Also, the vibrator profile is taken to be the triangular hump shape tr(X)
of Terent’ev (1984)as defined in the paper. Initially the computations were performed over
a much larger domain in Fourier (k) space, (|k| 6 40) with a consequent greater spatial
resolution in X.
In figure 1 we present results for the unstable case with ω = 2.5 varying both the

number of Fourier modes takes as well as varying the number of Chebychev points used
in the Y direction. The results show fully spatially converged results even for the wave
packet.
Next we investigated using different temporal schemes and varying the time-step. In

the description of the numerical method only the second order fully implicit temporal
differencing was described. However other schemes were also tried including the Crank-
Nicolson scheme in which the equation

Uτ + S(U) = R

is approximated by

Un+1 − Un

∆t
+ φS(Un+1) + (1− φ)S(Un) = R.

Taking φ = 1/2 gives the Crank-Nicolson scheme, φ = 1 gives the fully implicit scheme.
In figures 1 the results show that as far as the restricted range of X is concerned the
results obtained are the same across different schemes. However in figure 2, and figure
3 by changing the time-differencing scheme or using smaller time-steps, the wave packet
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Figure 1: Results for ω0 = 2.5 at t = (K + 1

4
)Tperiod,K = 8 showing (a) the restricted

X range and (b) the full computed range for different values of m the number of Fourier
modes, and N the number of Chebychev modes.
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Figure 2: Results for ω0 = 2.5 at t = (K + 1

4
)Tperiod,K = 8.. The label ET denotes

the scheme 3Un+1
−4Un

+Un−1

2∆t
+ S(Un+1) = R and the label Crank-Nicolson the scheme

Un+1
−Un

∆t
+ φS(Un+1) + (1− φ)S(Un) = R with φ = 1/2.

behaviour is unresolved. In fact in figure 3 it can be seen that the amplitude of the wave
packet increases as the time timestep is reduced.
It is clear from figures 3, 4 when looking at the full computed range, the results do

not show convergence when using different time differencing schemes or when reducing
the timesteps. In figure 5 we have compared results in using different functions q(τ) =

1−e−aτ2

with different values of a. Whilst these results show convergence in the restricted
range of X, in the full computed range the amplitude of the wave packet depends on
the value a. Although not shown in the results presented here, we additionally tried to
initiate the temporal simulations at a time t0 taking the asymptotic solution for small
t0 as the initial condition. However this did not make any difference to the results and
behaviour described above.



Supplementary material 3

50 60 70 80 90 100

X

-3

-2

-1

0

1

2

3

2
P

×10
6

ET

CN

(a)

65 70 75

X

-6

-4

-2

0

2

4

2
P

×10
5

dt=0.025

dt=0.0125

(b)

Figure 3: Results for ω0 = 2.5 at t = (K + 1

4
)Tperiod,K = 8. (a) The label ET denotes

3Un+1
−4Un

+Un−1

2∆t
+ S(Un+1) = R. The label CN denotes Un+1

−Un

∆t
+ φS(Un+1) + (1 −

φ)S(Un) = R with φ = 1/2. In (b) results shown for different timesteps.
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Figure 4: Results for ω0 = 2.5 at t = (K + 1

4
)Tperiod,K = 4, for different timesteps dt.
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Figure 5: Results for Q(T ) = −(1− e−aT 2

) sinω0T with a = 0.01 and a = 0.04. Results
for ω0 = 2.5 at t = (K + 1

4
)Tperiod,K = 9.
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1. Supplementary material: Grid independent results and alternative

numerical formulation

In order to further validate the above results, we tried a different numerical method
to solve the initial-vaue problem. In conducting tests with this new approach it became
apparent that the difficulties in obtaining resolved results for the wave packet were due
to two main reasons. First the earlier computations were performed over a much larger k
range and this made it harder to control the growth of the high wavenumber components
during the computation. Restricting the range to |k| 6 2π helped to moderate this
growth. Secondly, the timesteps required for resolving the wave packet need to be much
smaller than we had initially used. Also the difficulties were compounded by working
with the triangular shaped vibrator as opposed to using the Gaussian shaped vibrator.
In the new approach the equations are reformulated as a first order system of the form

Mij

∂wj

∂T
+

∂wi

∂Y
= Ri. i, j = 0, 1, 2, 3, (1.1a)

where Mij = 0 for (i, j) 6= (2, 1) and M2,1 = −1, with

R = (−ikw1, w2, ikY q1 + w0 + ikw3, 0)
T . (1.1b)

The boundary conditions are expressed as

w0 = w1 = 0 on Y = 0, (1.1c)

w2 = w1 − [q(t)h∗(k) +
w3

|k|
] = 0 on Y = Y∞. (1.1d)

Here q(t), h∗(k) are described in the paper, with h∗(k) being the Fourier transform of
the vibrator shape h(X). We tried

q(t) = (1− e−at2) sin(ω0t)

for different values of a as well as q(t) = sin(ω0t). The equations (1.1) were solved with a
Crank-Nicolson second order time differencing scheme, and using Chebychev collocation
for the Y dependence. The results from this approach agreed well with the method as
described in the main paper. In figure 6 we have shown results for the unstable case with
ω = 2.5 using three different timesteps at two instants in time for the Gaussian hump
with an impulsive start q(t) = sin(ω0t). Similar results are available for the other cases
considered and demonstrate convergence with decreasing timesteps.
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Figure 6: Results for the pressure P taking timesteps dt = Tper/128 dt =
Tper/256, dt = Tper/512 at times (a) 4Tper and (b) 8Tper for the unstable case with
ω = 2.5 and with 2048 Fourier modes with |k| < 2π.

2. References

REFERENCES

Terent’ev, E. D. 1984 Linear problem of a vibrator peforming harmonic oscillations at super-
critical frequencies in a subsonic boundary layer. Prikl. Mat. i Mekh. 48, 264–272.


