A three-dimensional small deformation theory for electrohydrodynamics of dielectric drops

Debasish Das¹[†], and David Saintillan²

¹Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK.

²Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA

Movie Caption

• Movie 1: Drop deformation and flow field corresponding to drop radius $a_d = 0.7 \text{ mm}$, viscosity ratio $\lambda = 1.41$, electric field strength $E/E_{c,s} = 2$, conductivity ratio R = 36.6, and permittivity ratio Q = 0.57.

• Movie 2: Drop deformation and flow field corresponding to drop radius $a_d = 0.7 \text{ mm}$, viscosity ratio $\lambda = 14.1$, electric field strength $E/E_{c,s} = 2$, conductivity ratio R = 36.6, and permittivity ratio Q = 0.57.