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Appendix A. Numerical method and the grid independence test

A.1. Discretization and the numerical algorithm

A variant of the explicit numerical scheme used by Harada (1980) is implemented to
solve (2.6a–2.6e) and (2.8) in the main paper (Aghor & Alam 2021). In this method,
the primitive variables are used to write down the finite difference approximation of the
governing equations and the related boundary conditions on uniform, staggered grids
in the meridional (r, z)-plane. The choice of staggered grid is motivated by the physics
of the problem since we do not have boundary conditions for density and pressure. To
avoid imposing artificial boundary conditions on ρ and p, the calculation of density and
pressure fields is pushed inside the domain using staggered grid, see Harada (1980).

To approximate first-order spatial derivatives, the central difference method is used;
the upwind scheme or the donor-cell method is adopted for convective derivatives. A
second-order leapfrog-type DuFort-Frankel method is used for diffusion terms and time
stepping, the details of which can be found in LeVeque (2007). For example, the second
derivative of some physical quantity ψ is approximated as

δxδxψj =
1

∆xj

[(
ψ(j+1) − ψ̄j

)
/∆xj+ 1

2
−
(
ψ̄j − ψ(j−1)

)
/∆xj− 1

2

]n
, (A 1)

where

ψ̄j
n

=
1

2

(
ψn+1
j − ψnj

)
, (A 2a)

∆xj+ 1
2

=
1

2
(∆xj +∆xj+1) , (A 2b)

and

∆xj =
1

2

(
∆xj+ 1

2
+∆xj− 1

2

)
. (A 2c)

Note that ∆xj+ 1
2

= ∆xj+ 1
2

= ∆xj for uniform grids. Equation (A 1) seems to represent

an implicit scheme, since ψn+1
j appears on the right hand side of Eq. (A 1) via Eq. (A 2a);

however, the term ψn+1
j from the future is brought back to the left hand side (in all

discretized equations) to make the scheme explicit.
To avoid computational splitting inherent to the DuFort-Frankel method, the filtering

is done after every m = 20 dimensionless time-steps, using the following formula,
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(A 3)

as suggested by Harada (1980) and Hyun & Park (1992).
The algorithm to obtain the numerical solution of discretized equations is summarized

below:
(i) In the present numerical scheme, we need two initial conditions, one physical and

other computational, in order to march in time. We take ψ1 = ψ0, where ψ can be
u, v, w, ρ̄, T, p.

(ii) Solve for (ρ̄u)n+1, (ρ̄v)n+1, (ρ̄w)n+1 from momentum equations (2.6b-2.6d).
(iii) Get ρ̄n+1 by plugging in the updated velocity fields obtained from the previous

step into the continuity equation (2.6a).
(iv) Get (ρ̄T )n+1 from the energy equation (2.6e).
(v) Update pressure pn+1 from the equation of state.
(vi) Obtain [un+1, vn+1, wn+1, Tn+1] by dividing [(ρ̄u)n+1, (ρ̄v)n+1, (ρ̄w)n+1, (ρ̄T )n+1]

by ρ̄n+1.
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Figure S.20. Dependence on grid-size of the time-evolution of (a) KEu, Eq. (A 4), and (b)
KEw, Eq. (A 5); the numbers of grid-points along axial and radial directions (Nz ×Nr) are as
follows: 21 × 21 (Black), 41 × 21 (Blue) and 41 × 41 (Green). The aspect-ratio Γ is increased
from 3.1 to 6.4 and then decreased back to 3.1 in time; Γ was changed in steps of dΓ = 0.1
after every 6 × 105 time-steps, i.e. with a ramp rate of dΓ/dt ≈ 3.33 × 10−2, where t is the
dimensionless time. Parameter values are Re = 200, Ma = 1 and Pr = 1, with stationary outer
cylinder.

(vii) To avoid computational splitting error caused by leap-frogging, filter after every
m time steps according to (A 3).
(viii) Keep going until the steady state is reached.

We monitor the temporal evolution of the global kinetic energy [based on (i) azimuthal,
(ii) axial and (iii) radial velocities, (A 4)] which saturates to a constant value when the
steady state is reached.

A.2. Grid independence test

In order to check the grid dependency of present calculations, a set of runs was done
with three different grid-sizes (Nz×Nr = 21×21, 41×21 and 41×41, where Nz and Nr
denote the number of grids along axial and radial directions, respectively) at a Reynolds
number of Re = 200 which represents the highest Re (see figure 5 in Aghor & Alam
(2021)) accessed to study transitions among symmetric rolls. The temporal evolutions of
global kinetic energies based on (i) the radial velocity,
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and (ii) the axial velocity,
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are shown in figures S.20(a) and S.20(b), respectively, for Re = 200 with other parameters
as in figure 4(b) in the main paper (Aghor & Alam 2021). For each grid-size, the aspect-
ratio Γ is increased from 3.1 to 6.4 and then decreased back to 3.1, with a ramp rate of
dΓ/dt = 0.0333 where t is the dimensionless time (based on viscous time scale).

As clarified in §3.1 in the main paper (Aghor & Alam 2021), the jumps in kinetic
energies in figure S.20(a,b) refer to sudden increase/decrease in the number of Taylor
rolls. It is seen in figure S.20 that there are oscillations near the first transition [2 → 6
rolls] during the up-sweep run – this can possibly be eradicated by using a smaller time-
step and a longer waiting time before changing the aspect ratio (i.e. by reducing the



4 P. Aghor and M. Alam

(a)

(b)

Figure S.21. Dependence of grid-size on streamline patterns in (r, z) plane – upper panels:
21 × 21; lower panels: 41 × 41. For both cases, Γ was increased from 3.1 to 6.4 and decreased
back to 3.1 at a ramp rate of dΓ/dt = 0.033. Parameter values are the same as in figure S.20.

ramp rate dΓ/dt). The point to be noted is that a grid-size of (Nz × Nr) = (41 × 21)
is sufficient to accurately predict (i) the onset of roll-transitions (such as in the phase-
diagram in figure 5) as well as (ii) the kinetic energy levels at an inner-cylinder Reynolds
number of Re = 200.

Figure S.21(a,b) displays the snapshots of streamline patterns at different Γ during the
above protocol of quasi-static change in Γ : while the upper panels refer to a grid-size of
(Nz×Nr) = (21×21), the lower panels correspond to a grid-size of (Nz×Nr) = (41×41).
The patterns look strikingly similar even with a coarser grid of (Nz ×Nr) = (21 × 21),
but the velocity-levels are slightly over-predicted compared to those at (Nz × Nr) =
(41× 41). Collectively, based on results presented in figures S.20 and S.21, we conclude
that the phase diagram (viz. figure 5), the bifurcation diagrams (such as figures 4(c),
6(b), 8(a-c) and 10(a,b); Aghor & Alam (2021)) and the patterns of Taylor rolls and
other hydrodynamic fields are grid-independent and hence robust.
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Figure S.22. (a) Color-map of temperature (upper panels) and (b) density (lower panels) in
the (r, z) plane. Parameter values are as in figure 6(a) in Aghor & Alam (2021).

With reference to streamline plots in figure 6(a) in the main paper (Aghor & Alam
2021) that hold for Re = 150, the meridional-plane temperature T (r, z) and density
ρ(r, z) are shown in figures S.22(a) and S.22(b), respectively. It is seen that the temper-
ature maxima is located within the annular gap, whereas the density maxima is located
near the outer cylinder; the red-colored blobs in each panel of figure S.22(a) refer to the
locations of outward jets through which a relatively hotter and rarefied gas is transported
from the inner towards the outer cylinder. The outward jets are also correlated with the
local maxima of the azimuthal velocity field v(r, z) and the specific angular momentum
L(r, z) = 〈ρvr〉 as confirmed in figure S.23(a,b).
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Figure S.23. Color-maps of (a) azimuthal velocity (upper panels) and (b) specific angular
momentum (lower panels) in the (r, z) plane. Parameter values are as in figure 6(a) in Aghor &
Alam (2021).

Figure S.24. Effect of ramp rate on hysteresis-regions at Re = 180, with the middle panel being
the same as figure 17(a) in Aghor & Alam (2021), each panel representing bifurcation diagram
in the (|w|, Γ )-plane, where w is the mid-height, mid-gap axial velocity. For the side-panels, the
aspect-ratio Γ was changed in steps of ∆Γ = 0.001 (after every 106 time steps), resulting in a
ramp rate of dΓ/dt = 10−4, see the text for details, and the grid-size is 21× 21.
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Figure S.25. Top row: streamline plots on the meridional (r, z)-plane for Γ = 0.9, 0.87 and
0.867 (from left to right), corresponding to the 1-roll branch on the left panel of figure S.24.
Bottom row: streamline plots on the meridional (r, z)-plane for Γ = 1.15, 1.18 and 1.182 (from
left to right), corresponding to the 1-roll branch on the right panel of figure S.24.

Appendix B. Asymmetric two-rolls and the effect of ramping rate on
subcritical/hysteretic transitions

The phase-diagram in figure 16(a) in the main paper (Aghor & Alam 2021) was
constructed largely using the ‘Γ -increase/decrease’ protocol, with a ramp rate of dΓ/dt =
2.5× 10−4, which indicated that ‘2→ 1’-transition is sub-critical at Γ < 1 as confirmed
in the bifurcation diagrams in figure 17(a-e) in Aghor & Alam (2021). A few data
points in figure 16(a), marked by filled circles and squares, were obtained using the
‘Re-increase/decrease’ protocol (such as in figure 15(d); Aghor & Alam (2021)). In
the context of the present “transient” DNS code, a pertinent question: did we track
the bifurcation points accurately with a finite ramping rate? Since the relaxation time
diverges at the bifurcation point, the ramping rate should be as small as possible.

To ascertain the possible effects of ramp rate on the sub-critical transition over the
range of studied Γ in figure 16(a), we have reconstructed figure 17(a), that holds for
Re = 180, with a slower ramp rate, see figure S.24. In particular, to identify the left
hysteresis-loop, the simulations were started from the 1-roll branch by decreasing aspect-
ratio from Γ = 0.9 in steps of ∆Γ = 0.001 after every 106 time steps – this corresponds
to a ramp rate of dΓ/dt = 10−4 and subsequently the simulations were restarted from
the 2-roll branch at Γ = 0.85 by increasing Γ in steps of ∆Γ = 0.001 after every 106

time steps at the same ramp rate. The same protocol was used to identify the right
hysteresis-loop by starting simulations from Γ = 1.15. The related bifurcation diagrams
in the (|w|, Γ )-plane are shown on the left and right panels of figure S.24, with its center
panel being the original figure 17(a) of Aghor & Alam (2021).



8 P. Aghor and M. Alam

(a) (b)

(c) (d)

Figure S.26. (a) Effect of ramp-rate on the bifurcation diagram in the (Re, |w|)-plane at an
aspect ratio of Γ = 0.9. Inset shows the variation of the Reynolds number for the bifurcation
point (triangles) and limit points (inverted triangles) with ramp-rate. (b,c,d) Persistence of
subcritical bifurcations at (b) Γ = 1.0, (c) Γ = 1.1 and (d) Γ = 1.15; the ramp-rate in panels
(b-d) is set to dRe/dt = 0.02.

It is clear from figure S.24 that the locations of both limit points (ΓLPL ≈ 0.867
and ΓLPR ≈ 1.182) remained nearly fixed with dΓ/dt = 10−4 (left and right panels) and
dΓ/dt = 2.5×10−4 (centre panel), but the bifurcation points (ΓBPL and ΓBPR ) have moved
slightly closer to the respective limit point with a decreased ramping rate. Consequently,
the range of Γ over which hysteresis occurs has decreased with decreasing ramping rate.
However, the point to be noted is that both hysteresis loops survive (ΓBPL − ΓLPL > 0
and ΓLPR − ΓBPR > 0) even at the lowest ramping rate considered. With reference to
figure 17(a) of Aghor & Alam (2021), it should be noted that the bifurcation and limit
points at Re = 180 correspond to a ramp rate of dΓ/dt = 10−4 (as in the left and
right panels of figure S.24), while the remaining data points (open symbols) have been
obtained with a larger ramp-rate of dΓ/dt = 2.5× 10−4.

Figure S.25 displays the streamline plots for asymmetric rolls belonging to the left (top
row) and right (bottom row) hysteresis loops (viz. figure S.24) at various values of the
aspect ratio Γ . It is seen that, for both cases, the asymmetric rolls gradually transform
towards a symmetric 2-roll state with (de/in)creasing Γ on the left and right hysteresis
loops, respectively.

To further verify the robustness of observed subcritical bifurcation in figure 16(a), we
have carried out ramping-simulations with Re-increase/decrease protocol by employing
the homotopy technique (i.e. the asymmetric axial boundary condition on the temper-
ature, Eq. (4.1)), see the discussion in §4.1 of the main paper (Aghor & Alam 2021).
The bifurcation diagrams in the (Re, |w|)-plane are displayed in figures S.26(a–d) at
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Γ = 0.9, 1.0, 1.1 and 1.15, respectively. For all Γ the bifurcation is found be sub-critical,
reconfirming that the persistence of the left and right hysteresis loops in figure 16(a)
(main paper) for the case of compressible TCF (Ma = 1). The inset of figure S.26(a)
indicates that the limit-point Reynolds number (ReLP , marked by inverted triangles
in the inset) is accurately captured if a ramp rate of dRe/dt = 5 × 10−2 is used
(ReLP = 174 at dRe/dt 6 5× 10−2); on the other hand, the location of the bifurcation
point (ReBP , marked by the triangles in the inset) is nearly invariant at a ramp rate of
dRe/dt = 2× 10−2. That the limit and bifurcation points (ReBP ≈ 180 > ReLP = 174)
remain separated has been confirmed by extrapolating ReBP and ReLP at the zero ramp-
rate using the Richardson extrapolation technique on the data set for three ramping rates
(dRe/dt = 0.5, 0.05 and 0.02).

Collectively, from the above analysis, we conclude that the ‘2 → 1’-roll transition
is indeed sub-critical in compressible Taylor-Couette flow over a broad range of aspect-
ratios around Γ = 1. This finding is in contrast to the super-critical nature of ‘2→ 1’-roll
transition in incompressible TCF for aspect-ratios Γ < 1.23, except over a very narrow
range of 1.23 6 Γ 6 1.26 where the transition is sub-critical and the disconnected
solutions appear at Γ > 1.26; see figure 16(b) in the main paper (Aghor & Alam 2021).
We have also demonstrated in figure 17(c-d) (Aghor & Alam 2021) that the range of
Γ over which the above bistability occurs increases with increasing Mach number for a
given Reynolds number. Therefore, we conclude that the gas-compressibility makes the
‘2→ 1’-roll transition sub-critical in compressible Taylor-Couette flow.
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