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S1. Numerical implementation 
 
The governing equations have been solved using the finite element method taking the 
appropriate boundary conditions into consideration. Due to the complex nature of the coupled, 
nonlinear, partial differential governing equations, for efficient execution of the computational 
approach, we have used the foundation of Comsol Multiphysics software (Mandal et al. 2015; 
Sáenz et al. 2017; Santra et al. 2019; Zang et al. 2018; Chubynsky et al. 2020; Kaplan & 
Mahadevan 2015; Wang et al. 2019), and have incorporated additional user-defined routines to 
capture the detailed physics. As an essential premise of our computation, we have employed the 
in-built laminar flow interface that uses a finite element solver for the governing Navier-Stokes 
equation. Newton iterations are executed and the MUMPS solver has been implemented for the 
linear algebraic system deriving from the finite-element formulation. For temporal discretization, 
we have employed a Second-order BDF (backward differentiation formula) scheme with free 
steps. For accurately capturing the dynamics of the droplet, in this time-stepping method, we 
have chosen the maximum time step having a value of 5×10-4  whereas the numerical simulation 
starts at a very small time step having an order of 10-7. In all simulations, we have fixed a 
tolerance level of 10-6. For the post-processing of the numerical data, we have used our in-house 
Matlab code. For confirming the accuracy of the results, we have validated the numerical results 
extensively with the well-established numerical and experimental results as reported in the 
literature, and found an excellent agreement. 
For tracking the interface, we have adopted phase field model and coupled it with the Navier-
Stokes equation through the phase-field parameter-dependent physical properties and interfacial 
tension. Further to this, we have accommodated the electrical forcing and interfacial tension as 
functions of phase field parameter and incorporated in the governing Navier-Stokes equation as 
forcing terms. In addition, we have also expressed the electrophysical properties as a function of 
the phase field order parameter. In this way, we have developed a customized complete 
electrohydrodynamic model for multiphase and multicomponent flows in the skeletal structure 
provided by the Software.  
 
S2. Grid independence study and Cahn number independence study. 
 
In the phase field method, Cahn number ( **Cn Hξ= , where the thickness of the interface is 
controlled by the parameter *ξ ) is used to represent the thickness of the interfacial region, which 
in turn alters the dynamics of the droplet. However, below a particular value of Cn, the dynamics 
becomes independent of the same. Hence, we need to perform the Cahn number independence 



test. Again, for properly resolving the interfacial properties, one needs to employ adequately fine 
meshes at the interfacial region (Yue et al. 2010; Zhou et al. 2010). Thus, the grid size is also 
found to be related to Cahn number. For the Cahn number independence test, we have assumed 
the Cahn number to be the same as that of the grid size in the computational domain (Santra et al. 
2018; Mandal et al. 2015; Santra et al. 2020). Therefore, the Cahn number independence study 
automatically ensures the grid independence study and vice versa. For the Cahn number 
independence test, we have considered Cn = 0.015, 0.01, 0.005 as depicted in figure S1(a). The 
figure shows negligible variation among the results for lower values of Cn. Again, a too-small 
value of Cn (=0.005) unnecessarily enhances the computational cost. Hence, we have chosen 
Cn=0.01 in the present analysis. 

 
FIGURE S1. (a) Cahn number independence study. (b) Effect of the grid size on the migration 
characteristic of the droplet in combined presence of axial electric field and background 
oscillatory flow. Important parameters are S=2, R=0.5, Ca=0.3, Re=0.1, a=0.3,Yd=0.525, ρr=1, 
λ=1and CaE=1.5. 

It is worth mentioning that, for Cn=0.01, the thin interface between two immiscible phases 
encounters a large gradient of the order parameter. To tackle this, very fine mesh is required at 
the interfacial region. If we chose coarse grids in the computational domain, especially near the 
interface, it creates a poor implementation of interfacial tension, which can develop spurious 
oscillations in the solution, especially near the interfacial region (Yue et al. 2004). Because of 
that, the results may vary unphysically, which is not desirable in numerical modeling of any 
realistic scenario. To explicitly demonstrate the importance of optimal grid size (δ) compared to 
interfacial thickness (Cn), we further performed another set of studies, where we fixed the value 
of Cn=0.01 and varied the size of the grid element as depicted in figure S1(b). The figure clearly 
demonstrates that the migration characteristic is extremely sensitive to mesh size and a coarser 
mesh creates incorrect prediction of the oscillatory migration characteristic. However, below a 
particular value of the grid size (δ=Cn), a negligible discrepancy is observed in the migration 
characteristic and it becomes independent of the size of the grid element. We have taken 
Cn=0.01 and δ=0.01 into the numerical analysis and we have found an excellent quantitive 
matching with benchmark results reported in the literature. 
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