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In this document, we extensively validate single-phase flow results as part of the
study in the manuscript titled “Particle-laden Taylor-Couette flows: Higher order
transitions and evidence for azimuthally localized Wavy vortices”. The flow
generated in the present facility by the motion of the inner cylinder has been validated
in the past for single-phase flows, albeit only with the aid of torque measurements in
the study by Ravelet et al. (2010). The system has since then been primarily utilized in
studies pertaining to highly turbulent flows (thus Reynolds numbers > 104), with the
exception of Alidai et al. (2016) who studied turbulent patches for pure outer cylinder
rotation. Since the focus of the current study is on inner-cylinder driven, non-turbulent
flow regimes, we validate the single-phase flow regimes in our system, primarily with the
aid of flow visualization in section 1 and briefly with torque measurements in section 2.

1. Regime classification per flow visualization

As emphasized in the manuscript, single-phase flows in the Taylor-Couette geometry
have been studied in much detail previously. For the purpose of this study, we classify the
flow regimes into two domains: lower order transitions and higher order transitions. The
former is associated with flow regimes appearing between laminar Couette flow and the
first fully-formed laminar wavy vortices along the circumferential direction, whereas the
latter is associated with flow transitions and flow states that appear beyond. A similar
distinction was made by Dutcher & Muller (2009).

1.1. Lower order transitions: From Laminar Couette Flow to Wavy Vortex Flow

The lower order transitions are pretty well studied and for single-phase flows, the flow
undergoes a transition from purely circular, Couette flow to Wavy Vortex Flow via the
regime of Taylor Vortex Flow. We observe this expected behaviour, as exemplified by the
images in figure 1.

The flow initially is circular, which is free of any distinct features (figure 1(a)), owing
to the fact that the flow is purely along the azimuthal direction. Beyond a critical Re,
we observe the presence of the Taylor Vortex Flow regime (figure 1(c)), where the Taylor
vortices appear as steady bands. This regime is often preceded by a regime where bulk
of the flow is laminar but vortices due to Ekman pumping are prominent at the ends of
the setup (figure 1(b)). We observe a more persistent presence of these end vortices in
the ramp-up experiments as compared to the ramp-down ones.

In the ramp-up (alternatively, ramp-down) experiments, we observe the first (last)
appearance of weak/developing Taylor vortices at Re = 136 (Re = 128), while they first
(last) appear fully developed at Re = 152 (Re = 152). These are comparable to critical
Reynolds numbers predicted by linear stability theory (Di Prima & Swinney 1981, table
6.2) or other analytic expressions (Esser & Grossmann 1996, equation 7), Re ∼ 145 for
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Figure 1. Lower order transitions for single-phase flows. (Top) Full field-of-view snapshots
(inner cylinder rotates from right to left) (Bottom) Corresponding space-time plots (a) Circular
Couette Flow (CCF). (b) Appearance of vortices due to Ekman pumping. (c) Taylor Vortex
Flow (TVF). (d) Wavy Vortex Flow (WVF). Examples belong to the ramp-up experiment and
the Reynolds numbers are not indicative of critical values for transition.

a similar geometry. The finite step size in our experimental protocol prevents us from
finding the exact boundary of the transition between flow regimes, and for now, we take
the critical Reynolds number as Rec = 142 ± 12. With this, we also believe that the
finite length of the cylinders do not significantly impact the critical Re at which the
Taylor vortices appear, and this postulation is also in line with the findings of Cole
(1976), who did not observe an effect of the aspect ratio on the critical Reynolds number
(η = 0.914, 1.23 6 Γ 6 61). One critical difference between the two protocols is the
axial wavelength of the vortices. For the ramp-up experiments, pairs of vortices appear
to be separated by a distance of ≈ 2.1d, which deviates slightly from the theoretically
expected value of ≈ 2d. The slight discrepancy may be attributed to the limited resolution
in imaging (≈ 0.14d) as well as the influence of the end vortices. In contrast, the ramp-
down experiments showed the Taylor vortex flow state to have a higher axial wavelength
(≈ 2.32d), corresponding to a reduction by one Taylor vortex pair. Another factor that
could play a role in our observations is the time needed for the onset (alternatively, decay)
of Taylor vortices which are estimated to be Ld/ν = 50 s (10d2/ν = 108 s for decay) by
Czarny & Lueptow (2007), compared with the time we spend at a constant shear rate
i.e. 90 s. However, these time scales are more appropriate when the Reynolds number
under consideration is extremely close to the critical value, which is not applicable to our
results owing to the finite step sizes taken.

The critical Reynolds number for transition between Taylor Vortex Flow and Wavy
Vortex Flow is found to be between 172 6 Re 6 191 (192 > Re > 171) for the ramp-up
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(ramp-down) experiments, which suggests that the flow hysteresis does not have a strong
influence on the critical point for this transition. We approximate the critical Reynolds
number for this transition to be around Re = 181.5±10.5 or Re/Rec = 1.28±0.07. This
is slightly higher than the value of Re/Rec = 1.17± 0.02 reported by Dutcher & Muller
(2009) for their system (η = 0.912, Γ = 60.7). This discrepancy may be attributed to the
the lower aspect ratio in the current facility. Cole (1976) showed that a reduction in the
aspect ratio led to an increase in the critical Reynolds number for the transition between
Taylor Vortex Flow and Wavy Vortex Flow, due to the damping provided by the ends
(Jones 1985).

1.2. Higher order transitions: From Laminar Wavy Vortices to Turbulent Taylor
Vortices

The higher order transitions in single-phase Taylor-Couette flow are also well estab-
lished and we adopt the conventions of Dutcher & Muller (2009) as the basis for our
classification. The following flow regimes are identified on the basis of the temporal
spectrum: Wavy Vortex Flow, when the spectrum shows a single, distinctly identifiable
peak; Modulated Wavy Vortex Flow, when the spectrum shows multiple, incommen-
surate, distinctly identifiable peaks in the spectrum; Chaotic Wavy Vortex flow, when
the spectrum also has multiple peaks and the flow also shows small-scale structures;
Wavy Turbulent Vortex Flow, when the flow appears to have small-scale structures but
the spectrum has a single, dominant peak, and; Turbulent Taylor Vortex Flow, when the
Taylor vortices appear to be completely turbulent and the spectrum has no distinct peaks.
The Chaotic Wavy Vortex Flow regime has also been referred to as “weakly turbulent”
(Fenstermacher et al. 1979) and “Turbulent modulated wavy vortices” (Lueptow et al.
1992).

Examples of the different flow regimes and their corresponding spectra can be seen in
figure 2. The primary tool we employ is a simple spectral analysis along the time-axis of
the space-time plots. The spectra along each axial location are averaged to return a single
spectrum. The averaging is not expected to be detrimental as fundamental frequencies
have been found to be independent of the axial location (Fenstermacher et al. 1979), even
though this might not hold true for the amplitudes (see figure 1(d), for example). Peaks
in the spectra are identified as follows: All points at least ten median average deviations
away from the median of the spectrum are marked as “potential peaks”. Hereafter, only
the “potential peaks” that are local maxima in the neighbourhood of five points are
retained as true peaks. The frequencies in the spectra are normalized by the rotational
frequency of the inner cylinder (fi). Thus, all peaks close to f/fi = 1 may be associated
with the system itself (Dutcher & Muller 2009). We do not perform an extremely detailed,
quantitative analysis of the spectra (for example, identifying the significance of different
peaks, and identifying all the linear combinations), as it is not trivial (as evidenced by
Gorman et al. 1980; Takeda et al. 1993, in table 3 and figure 2 respectively) while also
going beyond the scope of the current study.

While a similar spectral analysis can also be performed along the space-axis to yield
axial wavenumbers, we restrict our discussion from the perspective of (de)generation of
vortex pairs (also referred to as vortex pinching/splitting processes by King & Swin-
ney (1983)). Given that our system has two fixed end plates, which fix the boundary
conditions for the flow, the (de)generation of vortices in the axial direction only occurs
in pairs. Azimuthal wavenumbers can be estimated with the help of full field-of-view
snapshots, with the knowledge that only integer number of waves may be present along
the circumference, as well as the ansatz that wave speeds do not change significantly
upon a small variation in the Reynolds number (see King et al. 1984, figure 7).
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Figure 2. Higher order transitions for single-phase flows. (Top) Detailed portions of space-time
plots. (Bottom) Corresponding amplitude spectra. (a) Wavy Vortex Flow (WVF) regime. (b)
Modulated Wavy Vortex Flow (MWVF) regime. (c) Chaotic Wavy Vortex Flow (CWVF) regime
(d) Wavy Turbulent Vortex flow (WTVF) regime (e) Turbulent Taylor Vortex Flow (TTVF)
regime. The examples here belong to the ramp-up experiment.

A comprehensive summary of the flow regimes for our experiments is shown in figure
3. The maximum Reynolds numbers achieved are Re/Rec = 18.58 and 15.42 for the
ramp-up and ramp-down protocols respectively. In general, it can be seen that the flow
states achieved in the two protocols are not the same, implying the presence of hysteresis
for the higher order transitions. We only address the key points here in the text.

For the ramp-up experiments, the first appearance of Wavy Vortex Flow is charac-
terized by the presence of six azimuthal waves and nine vortex pairs. Even though the
first non-axisymmetric mode should ideally have one azimuthal wave, and progressively
rise, we do not observe it due to our finite step sizes. For example, Krueger et al.
(1966) theoretically show for η → 1 that the flow goes from Taylor vortex flow to
Wavy vortex flow with five waves by Re ≈ 1.05Rec. The amplitude of these waves
progressively increase with increasing Reynolds numbers (especially in the bulk), and the
flow eventually appears to be in a mixed-mode state (Re/Rec = 2.01). The mixed-mode
state appears to be similar to the observations of Donnelly et al. (1980) “irregularities in
the roll and wavy structure” and King & Swinney (1983) “distorted wave patterns”. The
mixed-mode manifests itself in the spectrum by the appearance of a peak corresponding
to the azimuthal state with nine waves, which also happens to be a feature of the next
flow state (2.12 6 Re/Rec 6 2.22). At Re/Rec = 2.12, a vortex pinching process is
simultaneously incepted and is completed at Re/Rec = 2.22. This pinching process is
visible in the space-time plots as spiral defects/dislocations (not shown).

For 2.22 6 Re/Rec 6 2.62, we observe a distinct low-frequency component in the
spectrum (f/fi < 1), which Dutcher & Muller (2009) refer to as an “early-modulated
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Figure 3. Compilation of frequency spectra for single-phase flows. The size of the markers are
proportional to their amplitude in the spectrum. The coloured markers at the bottom correspond
to the flow regimes shown in figure 3 of the manuscript. In the legend, WVF (1) and WVF (2+)
refer to periodic (single, distinct peak in spectrum) and quasi-periodic (at least two, distinct,
incommensurate peaks in spectrum) Wavy vortex flows respectively.

wavy flow” region. While they mention that such modulations were never reported for
flows with a static outer cylinder, these low-frequency components appear to be very
similar to “transient mode” identified by Fenstermacher et al. (1979). We nevertheless
stick with the convention of Dutcher & Muller (2009) and classify it as a modulated wavy
vortex flow (see figure 2(b)). The range of Reynolds numbers over which this regime is
observed by us is much narrower than that of Dutcher & Muller (2009) (1.43 6 Re/Rec 6
3.56), and we speculate that it could be attributed to the shorter aspect ratio of our
system.

At Re/Rec = 2.87, yet another vortex pair degenerates, and the low-frequency com-
ponent disappears from the spectrum as well. The spectrum has a single, dominant
frequency between 2.87 6 Re/Rec 6 4.90, and we classify it as a Wavy Vortex Flow.
This second appearance of the Wavy Vortex Flow was also observed by Dutcher & Muller
(2009) (3.56 6 Re/Rec 6 5.20), and implicitly by Fenstermacher et al. (1979). Between
5.20 6 Re/Rec 6 5.68, a second frequency component (f/fi > 1) appears, what we
classify as a Modulated Wavy Vortex Flow. Dutcher & Muller (2009) too observe this
regime with f/fi > 1. Hereafter, the region of 5.95 6 Re/Rec 6 8.61 is characterized by
the presence of a spectrum with multiple peaks and making a clear classification cannot
be done until a systematic distinction between the significance of the different peaks is
performed. However, we do observe that beyond Re/Rec = 7.85, the flow appears to
have a visible presence of small-scale structures and the flow may then be considered to
be in the Chaotic Wavy Vortex Flow regime (see figure 2(c)).

At Re/Rec = 9.00, we observe the Wavy Turbulent Vortex Flow (compared to
Re/Rec = 7.85 reported by Dutcher & Muller (2009)), which is characterized by the
presence of a single, dominant peak in the spectrum, while the flow displays small-scale
structures. The ‘turbulence’ is also evident in the noise floor of the amplitude spectrum
(see figure 2(d)). Between 11.06 6 Re/Rec 6 11.35, a shift in the azimuthal state
occurs via a spectral cascade . However, between 11.66 6 Re/Rec 6 12.44, a peculiar
shift in the temporal frequencies is observed. The frequency peak corresponding to the
Wavy Turbulent Vortex Flow disappears suddenly, and is replaced by a high frequency
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component (f/fi > 4). At first sight, this regime seems to qualitatively resemble the ‘Fast
Azimuthal Wave’ (Walden & Donnelly 1979; Takeda 1999). However, a key difference is
that the fast azimuthal wave appears only once the Turbulent Taylor Vortex Flow has
set in, usually Re/Rec > 23 (Takeda 1999). The Wavy Turbulent Vortex Flow then
returns for 12.77 6 Re/Rec 6 14.63, before giving way to Turbulent Taylor Vortex
Flow for 15.07 6 Re/Rec 6 18.58 with an axial wavelength of ≈ 2.78d. Dutcher &
Muller (2009) report the onset of Turbulent Taylor Vortex flow at Re/Rec = 15.4. It
must be noted that Dutcher & Muller (2009) also report the appearance and subsequent
disappearance of second temporal frequencies beyond the wavy Turbulent vortex Flow.
Such an observation is indicative of the fact that the exact nature of higher order
transitions is not necessarily set in stone, and the analysis may thus be subjective.

The ramp-down experiments evidently show a different behaviour (see figure 3). One
key observation is that we do not access the Turbulent Taylor Vortex Flow regime.
Possible reasons for this may include: we accessed relatively lower Reynolds numbers
owing to higher temperatures, and the high acceleration rate to reach the highest shear
rate may delay the critical Reynolds number (see Dutcher & Muller 2009). Instead,
at the highest Reynolds number of Re/Rec = 15.41, we observe a Wavy state with
at least two incommensurate frequencies. Since the flow also shows distinct small-scale
features, we classify it as a Chaotic Wavy Vortex Flow regime. This behaviour continues
for the range 15.41 > Re/Rec > 12.94 with the exception of Re/Rec = 13.21, where
the frequency of the second wave appears to be different. A vortex pair disappears at
Re/Rec = 12.72 and between 12.72 > Re/Rec > 12.16, the nature of the flow remains
Chaotic Wavy, but where the frequencies involved are markedly different, with drastically
reduced amplitudes in the spectrum. This then gives way to a regime (11.90 > Re/Rec >
11.62) resembling the ‘Fast Azimuthal Wave’ (f/fi > 4) that was also observed in the
ramp-up experiments.

Between 11.36 > Re/Rec > 7.99, the flow goes from Chaotic Wavy Vortex Flow to
a Modulated Wavy Vortex Flow state via a couple of transitions in the azimuthal state
(11.36 > Re/Rec > 11.06 and 8.87 > Re/Rec > 7.99). The Modulated Wavy Vortex Flow
between 7.65 > Re/Rec > 5.46 is characterized by a very low-frequency component.
Hereafter, the Wavy Vortex Flow is recovered for the region 5.11 > Re/Rec > 1.76,
accompanied by the destruction of a vortex pair at Re/Rec = 4.20. Between 1.76 >
Re/Rec > 1.64, the Wavy Vortex Flow gains a vortex pair and is the final higher order
transition.

In summary, on the basis of our ramp-up experiments, we can confidently claim that
our Taylor-Couette system can reproduce flow states corresponding to higher order
transitions, in agreement with those reported in literature. The results of the ramp-
down experiments (in comparison to the ramp-up experiments), unsurprisingly, hint at
the non-uniqueness of the flow states attained at a given Reynolds number, even from a
purely topological perspective. This is unsurprising, in light of the seminal work of Coles
(1965).

2. Torque data

Torque measurements provide insight into the global behaviour of the flow, since it
refers to an integral quantity. For the range of Reynolds numbers considered in this study,
the primary insights attainable from the torque measurements are the critical Reynolds
number where the flow veers away from purely azimuthal flow. For a purely azimuthal
flow, an analytical solution may be easily derived relating the skin friction coefficient
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Figure 4. Torque measurements for both protocols are compared against numerical simulations
(data from Ostilla-Mónico et al. 2014, figure 4(a), η = 0.909). (a) Reduced skin friction
coefficient versus reduced Reynolds number. (b) Nuω − 1 versus Ta.

and the Reynolds number as cf,lam = 4
η(1+η)/Re (derivations available in Wendt 1933;

Koeltzsch et al. 2003).
In figure 4(a), the reduced skin friction coefficient (cf/cf,laminar,analytical−1) is plotted

against the normalized Reynolds number. The deviation of the skin friction coefficient
from its laminar value can also be used an indicator of the onset of Taylor vortices.
Without any prior knowledge of the flow regime, one might over-predict Rec by about
20%. This can be inferred by selecting the Re above which there is a monotonic rise in
the reduced skin friction coefficient. Possible reasons for this over-prediction include the
finite step sizes in the shear rates, as well as the measured torque values being close to
the absolute resolution of the system (0.01 Nm). For this reason, the reduced skin friction
coefficient does not converge to zero for Re/Rec < 1 either.

To check the fidelity of the torque measurements for higher Reynolds numbers, we
compare our results against those obtained in the direct numerical simulations of Ostilla-
Mónico et al. (2014), albeit with η = 0.909, Γ = 2π. A clear difference is visible in the
comparison of Nuω − 1 versus Ta, in terms of the absolute values, but the profile shapes
appear to be very similar. The differences in the absolute values may be attributed to
differing boundary conditions (the numerical simulations do not simulate end plates), as
well as the difference in axial wavelengths of the Taylor rolls. For the numerical work, it
has been shown that up to 20% variation in Nuω can be observed by changing the axial
wavelength of the Taylor vortices, especially at low Ta (Ostilla et al. 2013, their section
3.4). Moreover, for Re > 400, the global scaling behaviour of G ∝ Re1.47 (alternatively,
G ∝ Re1.49) was seen for the ramp-up (ramp-down) experiments. The scaling exponents
are in close agreement with the exponent of 1.5 available in the empirical correlations
of Wendt (1933). The value of 1.5 is attributed to the dominance of boundary layer and
hairpin contributions (Eckhardt et al. 2007). In summary, our results suggest that our
torque measurements are reliable for commenting on global scaling behaviours.
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