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SI.1: NUMERICAL METHODS

Direct numerical simulation is performed in the velocity-vorticity (u−ω) form of the incompressible Navier-stokes
equations

∇ · u = 0, (1)

∂ω

∂t
+ u · ∇ω = ω · ∇u + ν∇2ω (2)

where ν is the kinematic viscosity. DNS of these equations is carried out using a pseudospectral algorithm same
as those in refs. [1, 2]. The domain decomposition and fast Fourier transform are performed using the open-source
library “2DECOMP&FFT” [3], and 2/3 truncation rule is employed for dealiasing. Time integration is performed
using the adaptive time-stepping with third-order low-storage Runge-Kutta scheme. In the current study, the vortices
are assumed to have a Gaussian cross-section with vorticity distribution ω(r) = Γ/(4πr2

0) exp[−r2/4r2
0] with the

circulation Γ = 1 and core scale r0 = 0.01; and the Reynolds number ReΓ is varied by changing the viscosity ν.

Colliding vortex rings

For this case, to suppress the symmetry-breaking (planar-jet) instability and reduce the computational cost, the
symmetries of the initial condition are further employed – hence only a quarter of the domain (Lx = 2Ly = 2Lz = 2π)
is simulated. The number of grid-points in the x, y and z directions are Nx × Ny × Nz = 2048 × 1025 × 1025 and
4096× 2049× 2049 for ReΓ = 2000 and 4000, respectively.

Orthogonal vortex tubes

Each of the vortex tubes is orientated in the x and y directions, respectively. The two vortices intersect the z-axis
at (0, 0,−δ0/2) and (0, 0,+δ0/2). The initial separation is chosen the same as the colliding ring case, namely, δ0 = 0.2.
The computational domain is is {[xmin : xmax]× [ymin : ymax]× [zmin : zmax]} = {[−π : π]× [−π : π]× [−π : π]} with
the grids points Nx ×Ny ×Nz = 2048× 2048× 2048 and 4096× 4096× 4096 for ReΓ = 2000 and 4000, respectively.

Vortex ring and tube interaction

The vortex ring is of radius R = 1 and centre at (0, 0,−0.2) on a plane perpendicular to the z direction; the
vortex tube is orientated in the x direction. The computational resolution is the same as the orthogonal vortex tubes
simulations: the computational domain is is {[xmin : xmax]× [ymin : ymax]× [zmin : zmax]} = {[−π : π]× [−π : π]× [−π :
π]} with the grids points Nx × Ny × Nz = 2048 × 2048 × 2048 and 4096 × 4096 × 4096 for ReΓ = 2000 and 4000,
respectively.
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FIG. 1. The initial configuration of Reconnection for the colliding vortex rings. The vortex rings with circulation Γ and radius
R are located on inclined plane with θ = π/4 and initial minimum separation distance δ0 = 0.2; the right panel shows the
corresponding top view with Ss and Sc denote the symmetry and collision planes respectively.

SI.2: VORTEX AXIS TRACKING

Colliding vortex rings

The initial configuration (Fig. 1) has two-fold symmetry regarding the symmetry Ss and collision Sc planes. Hence,
the minimum distance δ between these two vortices occurs in the Ss and Sc planes for pre- and post-reconnection,
respectively The vortices undergo significant core deformation into non-circular shapes when they approach (Fig. 2),
and the reconnected vortex filaments take some time to collect together to form the bridge after reconnection (Fig. 3
–which makes the vortex center difficult to be determined. Following [2, 4], we take the vorticity centroid (computed
as the centroid of ωy which is above 75 % of its maximum) to be the vortex center. For example, for vortex in the
symmetry (y = 0 plane, the center is defined as

xc = (xc, 0, zc) =

∫ x=π

x=−π
∫ z=0

z=−π ωy ∗ xdxdz∫ x=π

x=−π
∫ z=0

z=−π ωydxdz
. (3)

The trajectories of the calculated vortex centers are represented as dashed lines in Figs. 2 and 3. Correspondingly,
the minimum distance δ is the distance between the two vortex centers. In addition, the vortex lines that go through
these centers can be considered as the vortex axis. Without loss of generality, and for sake of simplicity, we show in
movie S2 the time evolution of the vortex axis (calculated using ”stream3” function in Matlab) at ReΓ = 2000; and
the evolution at ReΓ = 4000 are quantitatively the same.

Orthogonal vortex tubes

To determine the minimum distance between these two vortex tubes, the axis of the vortex tubes needs to be
tracked. Here, we propose a vortex tracking method based on the vortex lines that go through the vortex center at
the boundary. First, the centriod of the vortex tubes at the planes x = −π and y = −π is determined using same
procedure discussed above (Eq. 3). Then, vortex lines that seeds from these two centers are integrated using the
”stream3” function in Matlab. Fig. 4 (and Movie S4) shows the time evolution of the vortex axis for ReΓ = 2000;
and the evolution at ReΓ = 4000 are quantitatively the same. Finally, the minimum separation distance δ is taken
as the shortest distance between these two vortex lines. Note that the vortex axis and the corresponding δ depends
on the choice of the seeds of the vortex lines. However, in the present work, we are mainly focused in the scaling of δ
that is much large than the vortex core size; hence the variation of seeds points does not alter the scaling of δ in this
regime.
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FIG. 2. Evolution of the vortex core shape (represented by the vorticity iso-contours ωy = [0.05 : 0.1 : 2]ω0) in the Ss plane for
the colliding vortex rings at ReΓ = 2000. The dash line denotes the vortex core trajectory.
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FIG. 3. Evolution of the vortex core (represented by the vorticity iso-contours ωz = [0.05 : 0.1 : 2]ω0) on the Sc plane for for
the colliding vortex rings at ReΓ = 2000. The dash line denotes the vortex core trajectory.

Vortex ring and tube interaction

Except for the choice of the seeds of the vortex lines, the vortex axis tracking algorithm for this configuration is
the same as the case of the orthogonal vortex tubes. The geometry is symmetric with respect to x = 0 plane. Fig.
5 shows the vortex patches in the x = 0 plane. Three vortex patches exist in the x = 0 plane, with two of them are
the same sign: one is from vortex ring and the other is from vortex tube. To unambiguously tracking the vortex ring
and tube, the centroid of the two same-signed vortices in x = 0 plane are employed as the seeds of the vortex lines.
The trajectory of these two same signed vortex patches are shown in Fig. 5, and they intersect with each other at
t = 1.1255, after which parts of vortex ring and tube exchanges. Fig. 6 (and also Movie S6) shows the time evolution
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FIG. 4. Evolution of the vortex axis for the orthogonal vortex tubes case at ReΓ = 2000.

of the vortex axis integrated from the vortex centroid in Fig. 5 for ReΓ = 2000; and the evolution at ReΓ = 4000 are
quantitatively the same. It is clearly that the axis of vortex rings and tube can be unambiguously identified.

MOVIES

Movie S1: Evolution of flow structures for reconnection of colliding vortex rings at ReΓ = 2000 using direct
numerical simulation of Naiver-Stokes equation. The radius of the vortex ring is R = 1 and the initial minimum
distance between two rings is δ0 = 0.2. The flow structures are represented by vorticity isosurface at 5% of maximum
initial vorticity |ω| = 0.05ω0.

Movie S2: Evolution of vortex axis for reconnection of colliding vortex rings at ReΓ = 2000 using vortex axis
tracking algorithm developed in SI.2.

Movie S3: Evolution of flow structures for reconnection of orthogonal straight vortex tubes at ReΓ = 2000 using
direct numerical simulation of Naiver-Stokes equation. The initial separation between these two tubes is δ0 = 0.2.
The flow structures are represented by vorticity isosurface at 5% of maximum initial vorticity |ω| = 0.05ω0.

Movie S4: Evolution of vortex axis for reconnection of orthogonal straight vortex tubes at ReΓ = 2000 using vortex
axis tracking algorithm developed in SI.2.

Movie S5: Evolution of flow structures for reconnection of vortex ring with a straight tube at ReΓ = 2000 using
direct numerical simulation of Naiver-Stokes equation. The radius of the vortex ring is R = 1 and the initial minimum
distance is δ0 = 0.4. The flow structures are represented by vorticity isosurface at 5% of maximum initial vorticity
|ω| = 0.05ω0.

Movie S6: Evolution of vortex axis for reconnection of vortex ring with a straight tube at ReΓ = 2000 using vortex
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FIG. 5. Evolution of the vortex patches (represented by vorticity iso-contours |ωx| = [0.05 : 0.05 : 2]ω0 in x = 0 plane for the
interaction of vortex ring and tube at ReΓ = 2000. The two vortex patches that are connected by dashed lines denotes the
the vortex dipole of the ring; and red and black dotted dash lines represents the trajectories of the negative ωx patches of the
vortex rings and tube, respectively. Note that the trajectories intersect at t = 1.1255.

axis tracking algorithm developed in SI.2.
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FIG. 6. Evolution of the vortex axis for reconnection of the vortex ring (blue) and tube (red) at ReΓ = 2000: (A) 3D and (B)
side view.


